Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Internal consistency of marine carbonate system measurements and assessments of aragonite saturation state: Insights from two U.S. coastal cruises

Citation: Patsavas, M. C., Byrne, R. H., Wanninkhof, R., Feely, R. A., & Cai, W.-J. (2015). Internal consistency of marine carbonate system measurements and assessments of aragonite saturation state: Insights from two U.S. coastal cruises. Marine Chemistry, 176, 9-20. https://doi.org/10.1016/j.marchem.2015.06.022

This research assesses the thermodynamic consistency of recent marine CO2 system measurements in United States coastal waters. As one means of assessment, we compared aragonite saturation states calculated using various combinations of measured parameters. We also compared directly measured and calculated values of total alkalinity and CO2 fugacity. The primary data set consists of state-of-the-art measurements of the keystone parameters of the marine CO2 system: dissolved inorganic carbon (DIC), total alkalinity (TA), CO2 fugacity (fCO2), and pH. This study is the first thermodynamic CO2 system intercomparison based on measurements obtained using purified meta cresol purple as a pH indicator. The data are from 1890 water samples collected during NOAA’s West Coast Ocean Acidification Cruise of 2011 (WCOA2011) and NOAA’s Gulf of Mexico and East Coast Carbon Cruise of 2012 (GOMECC-2).

Calculations of in situ aragonite saturation states (ΩA) near the saturation horizon exhibited differences on the order of ± 10% between predictions based on the (DIC, TA) pair of measurements vs. the (pH, DIC), (fCO2, DIC), or (fCO2, pH) pairs. Differences of this magnitude, which are largely attributable to the imprecision of ΩA calculated from the (DIC, TA) pair, are roughly equivalent to the magnitude of ΩA change projected to occur over the next several decades due to ocean acidification. These observations highlight the importance of including either pH or fCO2 in saturation state calculations.

Calculations of TA from (pH, DIC) and (fCO2, DIC) showed that internal consistency could be achieved if minor subtractions of TA (≤ 4 μmol kg− 1) were applied to samples of salinity < 35. The extent of thermodynamic consistency is also exemplified by the small offset between TA calculated from (DIC, pH) and that calculated from (DIC, fCO2): ~ 3 μmol kg− 1, which is similar to the accuracy of the TA measurements. Systematic trends can be detected in the offsets between measured and calculated parameters, but for this high-quality data set the magnitude of methodological improvements required to achieve exact thermodynamic consistency is quite small.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action