Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Large Natural pH, CO2 and O2 Fluctuations in a Temperate Tidal Salt Marsh on Diel, Seasonal, and Interannual Time Scales

Citation: Baumann, H., Wallace, R.B., Tagliaferri, T. et al. Large Natural pH, CO2 and O2 Fluctuations in a Temperate Tidal Salt Marsh on Diel, Seasonal, and Interannual Time Scales. Estuaries and Coasts 38, 220–231 (2015). https://doi.org/10.1007/s12237-014-9800-y

Coastal marine organisms experience dynamic pH and dissolved oxygen (DO) conditions in their natural habitats, which may impact their susceptibility to long-term anthropogenic changes. Robust characterizations of all temporal scales of natural pH and DO fluctuations in different marine habitats are needed; however, appropriate time series of pH and DO are still scarce. We used multiyear (2008–2012), high-frequency (6 min) monitoring data to quantify diel, seasonal, and interannual scales of pH and DO variability in a productive, temperate tidal salt marsh (Flax Pond, Long Island, US). pHNBS and DO showed strong and similar seasonal patterns, with average (minimum) conditions declining from 8.2 (8.1) and 12.5 (11.4) mg l−1 at the end of winter to 7.6 (7.2) and 6.3 (2.8) mg l−1 in late summer, respectively. Concomitantly, average diel fluctuations increased from 0.22 and 2.2 mg l−1 (February) to 0.74 and 6.5 mg l−1 (August), respectively. Diel patterns were modulated by tides and time of day, eliciting the most extreme minima when low tides aligned with the end of the night. Simultaneous in situ pCO2 measurements showed striking fluctuations between ∼330 and ∼1,200 (early May), ∼2,200 (mid June), and ∼4,000 μatm (end of July) within single tidal cycles. These patterns also indicate that the marsh’s strong net heterotrophy influences its adjacent estuary by ‘outwelling’ acidified and hypoxic water during ebb tides. Our analyses emphasize the coupled and fluctuating nature of pH and DO conditions in productive coastal and estuarine environments, which have yet to be adequately represented by experiments.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action