Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Modeling Impacts of Nutrient Loading, Warming, and Boundary Exchanges on Hypoxia and Metabolism in a Shallow Estuarine Ecosystem

Citation: Jeremy M. Testa, Nicole Basenback, Chunqi Shen, Kelly Cole, Amanda Moore, Casey Hodgkins, Damian C. Brady

We sought to investigate the impacts of nutrient loading, warming, and open-water boundary exchanges on a shallow estuary through idealized numerical model experiments. We performed these simulations using a stand-alone implementation of the Regional Ocean Modeling System-Row-Column AESOP biogeochemical model in the Chester River estuary, a tributary estuary within the Chesapeake Bay estuarine complex. We found that metabolic rates were elevated in the shallow tributary creeks of the estuary relative to open waters and that rates of gross primary production, respiration, and net ecosystem metabolism were a function of both water temperature and local phytoplankton biomass. Warming 0.75°C and 1.25°C led to reductions in dissolved oxygen concentrations throughout the estuary. Reductions (50%) in dissolved nitrogen and phosphorus loading did not substantially alter hypoxic volumes in this turbid, nutrient-rich estuary, but warming increased hypoxic volumes by 20%–30%. Alterations of the open-water boundary that represent improved oxygen concentrations in the adjacent Chesapeake Bay mainstem led to more substantial relief of hypoxia in model simulations than nutrient reductions (~50% reductions in hypoxia). These simulations reveal the complex interplay of watershed nutrient inputs and horizontal exchange in a small tributary estuary, including the finding that future warming and nutrient reduction effects on Chesapeake Bay hypoxia will be translated to some tributary estuaries like the Chester River.

Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action