Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Evaluating the time to detect biological effects of ocean acidification and warming: an example using simulations of purple sea urchin settlement

Citation: Buchheister A, McElhany P, Bjorkstedt EP (2024) Evaluating the time to detect biological effects of ocean acidification and warming: an example using simulations of purple sea urchin settlement. Mar Ecol Prog Ser 738:133-149. https://doi.org/10.3354/meps14598

Ocean acidification (OA) and ocean warming driven by climate change are important stressors for marine species and systems, but documenting and detecting their long-term impacts on biological responses outside of laboratory settings are challenging due to natural variability caused by complex processes and interactions. We used settlement of purple sea urchins Strongylocentrotus purpuratus in the Southern California Bight (USA) over 6 yr as an example data set to parameterize a simulation model for exploring the time needed to detect environmental effects on a biological response. A generalized linear model was used to describe an index of urchin settlement as functions of pH, sea surface temperature (SST), sea surface salinity (SSS), and spatio-temporal factors, demonstrating that settlement was negatively associated with pH (i.e. lower settlement at higher pH) and positively associated with SST and SSS. Monte Carlo simulations were developed from this base model under a variety of alternative scenarios to estimate the time to detect: (1) annual trends in pH and SST time series, (2) pH and SST effects on urchin settlement, and (3) annual trends in urchin settlement. Time to detect pH and SST effects was predominantly influenced by the underlying strength of the relationships and the model uncertainty. Time to detect annual trends in settlement was more sensitive to the severity of long-term OA and warming trends, which had cumulative (at times opposing) effects. This study highlights the variable time scales (2-60+ yr) that may be necessary to detect biological responses to OA and ocean warming and the sensitivity to different assumptions of the study system.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action