Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Pacific geoduck (Panopea generosa) resilience to natural pH variation

Citation: Spencer, L. H., Horwith, M., Lowe, A. T., Venkataraman, Y. R., Timmins-Schiffman, E., Nunn, B. L., & Roberts, S. B. (2019). Pacific geoduck (Panopea generosa) resilience to natural pH variation. Comparative Biochemistry and Physiology Part D Genomics and Proteomics, 30, 91-101. https://doi.org/10.1016/j.cbd.2019.01.010

Pacific geoduck aquaculture is a growing industry, however, little is known about how geoduck respond to varying environmental conditions, or how the industry will fare under projected climate conditions. To understand how geoduck production may be impacted by low pH associated with ocean acidification, multi-faceted environmental heterogeneity needs to be included to understand species and community responses. In this study, eelgrass habitats and environmental heterogeneity across four estuarine bays were leveraged to examine low pH effects on geoduck under different natural regimes, using targeted proteomics to assess physiology. Juvenile geoduck were deployed in eelgrass and adjacent unvegetated habitats for 30 days while pH, temperature, dissolved oxygen, and salinity were monitored. Across the four bays, pH was lower in unvegetated habitats compared to eelgrass habitats. However this did not impact geoduck growth, survival, or proteomic abundance patterns in gill tissue. Temperature and dissolved oxygen differences across all locations corresponded to differences in growth and targeted protein abundance patterns. Specifically, three protein abundance levels (trifunctional-enzyme β-subunit, puromycin-sensitive aminopeptidase, and heat shock protein 90-α) and shell growth positively correlated with dissolved oxygen variability and inversely correlated with mean temperature. These results demonstrate that geoduck may be resilient to low pH in a natural setting, but other abiotic factors (i.e. temperature, dissolved oxygen variability) may have a greater influence on geoduck physiology. In addition this study contributes to the understanding of how eelgrass patches influences water chemistry.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action