Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Purified meta-Cresol Purple dye perturbation: How it influences spectrophotometric pH measurements

Citation: Xinyu Li, Maribel I. García-Ibáñez, Brendan R. Carter, Baoshan Chen, Qian Li, Regina A. Easley, Wei-Jun Cai, Purified meta-Cresol Purple dye perturbation: How it influences spectrophotometric pH measurements, Marine Chemistry, Volume 225, 2020, 103849, ISSN 0304-4203, https://doi.org/10.1016/j.marchem.2020.103849.

Ocean acidification, a phenomenon of seawater pH decrease due to increasing atmospheric CO2, has a global effect on seawater chemistry, marine biology, and ecosystems. Ocean acidification is a gradual and global long-term process, the study of which demands high-quality pH data. The spectrophotometric technique is capable of generating accurate and precise pH measurements but requires adding an indicator dye that perturbs the sample original pH. While the perturbation is modest in well-buffered seawater, applications of the method in environments with lower buffer capacity such as riverine, estuarine, sea-ice meltwater and lacustrine environments are increasingly common, and uncertainties related to larger potential dye perturbations need further evaluation. In this paper, we assess the effect of purified meta-Cresol Purple (mCP) dye addition on the sample pH and how to correct for this dye perturbation. We conducted numerical simulations by incorporating mCP speciation into the MATLAB CO2SYS program to examine the changes in water sample pH caused by the dye addition and to reveal the dye perturbation mechanisms. Then, laboratory experiments were carried out to verify the simulation results. The simulations suggest that the dye perturbation on sample pH is a result of total alkalinity (TA) contributions from the indicator dye and chemical equilibrium shifts that are related to both the water sample properties (pH, TA, and salinity) and the indicator dye solution properties (pH and solvent matrix). The laboratory experiments supported the simulation results; the same dye solution can lead to different dye perturbations in water samples with different pH, TA, and salinity values. The modeled adjustments agreed well with the empirically determined adjustments for salinities >5, but it showed greater errors for lower salinities with disagreements as large as 0.005 pH units. Adjustments are minimized when the pH and salinity of the dye are matched to the sample. When the dye is used over a wide range of salinity, we suggest that it should be prepared in deionized water to minimize the dye perturbation effect on pH in the fresher sample waters with less well-constrained perturbation adjustments. We also suggest that the dye perturbation correction should be based on double dye addition experiments performed over a wide range of pH, TA, and salinity. Otherwise, multiple volume dye addition experiments are recommended for each sample to determine the dye perturbation adjustment. We further create a MATLAB function dyeperturbation.m that calculates the expected dye perturbation. This function can be used to validate empirically-derived adjustments or in lieu of empirical adjustments if dye addition experiments are unfeasible (e.g., for historical data). This study of dye perturbation evaluation and correction will improve the accuracy of the pH data, necessary for monitoring the long-term anthropogenic-driven changes in the seawater carbonate system.

Supported by OAP Grant #NA17OAR0170332

Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action