Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Quantifying the Atmospheric CO2 Forcing Effect on Surface Ocean pCO2 in the North Pacific Subtropical Gyre in the Past Two Decades

Citation: Chen S, Sutton AJ, Hu C and Chai F (2021) Quantifying the Atmospheric CO2 Forcing Effect on Surface Ocean pCO2 in the North Pacific Subtropical Gyre in the Past Two Decades. Front. Mar. Sci. 8:636881. https://doi.org/10.3389/fmars.2021.636881

Despite the well-recognized importance in understanding the long term impact of anthropogenic release of atmospheric CO2 (its partial pressure named as pCO2air) on surface seawater pCO2 (pCO2sw), it has been difficult to quantify the trends or changing rates of pCO2sw driven by increasing atmospheric CO2 forcing (pCO2swatm_forced) due to its combination with the natural variability of pCO2sw (pCO2swnat_forced) and the requirement of long time series data records. Here, using a novel satellite-based pCO2sw model with inputs of ocean color and other ancillary data between 2002 and 2019, we address this challenge for a mooring station at the Hawaii Ocean Time-series Station in the North Pacific subtropical gyre. Specifically, using the developed pCO2sw model, we differentiated and separately quantified the interannual-decadal trends of pCO2swnat_forced and pCO2swatm_forced. Between 2002 and 2019, both pCO2sw and pCO2air show significant increases at rates of 1.7 ± 0.1 μatm yr–1 and 2.2 ± 0.1 μatm yr–1, respectively. Correspondingly, the changing rate in pCO2swnat_forced is mainly driven by large scale forcing such as Pacific Decadal Oscillation, with a negative rate (-0.5 ± 0.2 μatm yr–1) and a positive rate (0.6 ± 0.3 μatm yr–1) before and after 2013. The pCO2swatm_forced shows a smaller increasing rate of 1.4 ± 0.1 μatm yr–1 than that of the modeled pCO2sw, varying in different time intervals in response to the variations in atmospheric pCO2. The findings of decoupled trends in pCO2swatm_forced and pCO2swnat_forced highlight the necessity to differentiate the two toward a better understanding of the long term oceanic absorption of anthropogenic CO2 and the anthropogenic impact on the changing surface ocean carbonic chemistry.

PMEL#5131

Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action