Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005–2011)

Citation: Alin, S. R., R. A. Feely, A. G. Dickson, J. M. Hernández-Ayón, L. W. Juranek, M. D. Ohman, and R. Goericke (2012), Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005–2011), J. Geophys. Res., 117, C05033, doi:10.1029/2011JC007511.

The California Current System (CCS) is expected to experience the ecological impacts of ocean acidification (OA) earlier than most other ocean regions because coastal upwelling brings old, CO2-rich water relatively close to the surface ocean. Historical inorganic carbon measurements are scarce, so the progression of OA in the CCS is unknown. We used a multiple linear regression approach to generate empirical models using oxygen (O2), temperature (T), salinity (S), and sigma theta (σθ) as proxy variables to reconstruct pH, carbonate saturation states, carbonate ion concentration ([CO32−]), dissolved inorganic carbon (DIC) concentration, and total alkalinity (TA) in the southern CCS. The calibration data included high-quality measurements of carbon, oxygen, and other hydrographic variables, collected during a cruise from British Columbia to Baja California in May–June 2007. All resulting empirical relationships were robust, withr2values >0.92 and low root mean square errors. Estimated and measured carbon chemistry matched very well for independent data sets from the CalCOFI and IMECOCAL programs. Reconstructed CCS pH and saturation states for 2005–2011 reveal a pronounced seasonal cycle and inter-annual variability in the upper water column. Deeper in the water column, conditions are stable throughout the annual cycle, with perennially low pH and saturation states. Over sub-decadal time scales, these empirical models provide a valuable tool for reconstructing carbonate chemistry related to ocean acidification where direct observations are limited. However, progressive increases in anthropogenic CO2 content of southern CCS water masses must be carefully addressed to apply the models over longer time scales.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action