Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Variability of bottom carbonate chemistry over the deep coral reefs in the Florida Straits and the impacts of mesoscale processes

Citation: Mingshun Jiang, Chudong Pan, Leticia Barbero, John Reed, Joseph E. Salisbury, James H. VanZwieten, Rik Wanninkhof, Variability of bottom carbonate chemistry over the deep coral reefs in the Florida Straits and the impacts of mesoscale processes, Ocean Modelling, Volume 147, 2020, 101555, ISSN 1463-5003, https://doi.org/10.1016/j.ocemod.2019.101555.

Abundant and diverse cold-water coral and fish communities can be found in the deep waters of the Florida Straits, which are believed to be living under suboptimal conditions impacted by increasing oceanic CO2 levels. Yet, little is known regarding the spatial–temporal variability of bottom carbonate chemistry parameters and their dynamic drivers in this area. To address this issue, we present results from numerical simulations of a coupled physical-biogeochemical model for the south Florida shelf and Florida Straits. Our exploratory analysis focuses on two well-known deep-coral habitats: Pourtalès Terrace (200–450 m) and Miami Terrace (270–600 m). Results suggest that bottom waters along the northern/western slope of the Straits are comprised primarily of the North Atlantic Central Water (NWCW) and Antarctic Intermediate Water (AAIW), driven by upwelling associated with the bottom Ekman transport of the Florida Current. Over the Pourtalès Terrace, both the meandering of the Florida Current and mesoscale eddies modulate the upwelling (downwelling) of cold (warm) waters. In contrast, Florida Current makes a sharp turn at the southern end of the Miami Terrace leading to persistent island wakes, frequent occurrences of a transient eddy, and strong upwelling of deep waters toward the platform of the terrace. Passage of the transient eddy often accompanies strong downwelling of warm waters and a return (southward) flow on top of the platform. Overall, bottom water properties including temperature (T), dissolved inorganic carbon (DIC) and total alkalinity (TA) show strong variability on weekly to monthly time-scales over entire Pourtalès Terrace and on the platform of Miami Terrac, mostly driven by physics. In deeper areas (>400 m), bottom water properties are fairly stable with both DIC and TA showing narrow ranges. Interestingly, waters over the southeastern portion of the Pourtalès Terrace show consistently warmer temperature, lower DIC, and higher TA than those on top of this terrace. The aragonite saturation state (Ω) ranges 1.2-2 on top of the Pourtalès Terrace and 1.2-1.7 both on top of Miami Terrace and on the upper slope of Pourtalès Terrace. In the deeper slope areas (>400 m), it is nearly constant at 1.2-1.3. This modeling effort suggests that remote forcing and biogeochemical processes along the transport paths, from the Gulf of Mexico to the Straits, are significant but second-order contributors to the variability of bottom carbonate chemistry. The impacts of benthic biogeochemical processes along the transit paths are not resolved.

Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action