Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Will Climate Change Alter the Swimming Behavior of Larval Stone Crabs?: A Guided-Inquiry Lesson

Citation: Smith, A. L., Jessyca LaBadie, Aly Busse, Emilie Solomon, Casie Farrell, Daniel M. Holstein, Zuo George Xue, Philip M. Gravinese. (2024). Will Climate Change Alter the Swimming Behavior of Larval Stone Crabs?: A Guided-Inquiry Lesson. Current The Journal of Marine Education, 39(2). https://doi.org/10.5334/cjme.117

The ocean has absorbed ~one third of the excess atmospheric carbon dioxide (CO2) released since the Industrial Revolution. When the ocean absorbs excess CO2, a series of chemical reactions occur that result in a reduction in seawater pH, a process called ocean acidification. The excess atmospheric CO2 is also resulting in warmer seawater temperatures. These stressors pose a threat to marine organisms, especially during earlier life stages (i.e., larvae). The larvae of species like the Florida stone crab (Menippe mercenaria) are free swimming, allowing a population to disperse and recruit into new habitats. After release, stone crab larvae undergo vertical swimming excursions in response to abiotic stimuli (gravity, light, pressure) allowing them to control their depth. Typically, newly hatched larvae respond to abiotic cues that would promote a shallower depth distribution, where surface currents can transport them offshore to complete development. As larvae develop offshore, they become less sensitive to certain abiotic stimuli, which promotes a deeper depth distribution that may expose them to variable current speeds, thus influencing the direction of advection (horizontal movement). Environmental stressors like ocean acidification and elevated seawater temperatures may also impact the larvae’s natural response to these abiotic stimuli throughout ontogeny (development). Changes in their natural swimming behavior due to climate stressors could, therefore, influence the transport and dispersal of the species. This guided-inquiry lesson challenges introductory marine biology and oceanography students to determine how future ocean pH and temperature projections could impact the swimming behavior of Florida stone crab larvae.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action