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Abstract

The Alaska Region includes the waters of the Gulf 
of Alaska, Eastern Bering Sea and surrounding the 
Aleutian Islands (for information on the Chukchi 
and Beaufort seas refer to Chapter 4: Arctic Region). 
Acidification in this region is driven by relatively 
high incorporation of atmospheric carbon due to 
high solubility in cold waters, as well as a number 
of regional processes such as seasonal productivity 
and sea ice melt pulses. Major fisheries exist in this 
region, some of which have proven to be sensitive 
to changes in ocean pH. Alaska communities also 
depend heavily on marine resources for subsis-
tence, cultural identity, and well-being. The follow-
ing research plan outlines the scientific rationale, re-
search objectives and actions for the Alaska Region 
focusing mainly on the following regional goals:  

•	 Expand ocean acidification (OA) 
monitoring with both oceanographic and 
shore-based based observing networks 
to characterize seasonal cycles, regional 
vulnerabilities, and future regional 
trajectories; 

•	 Assess sensitivity and resilience of 
critically important ecosystems and 
commercial species and use this 
knowledge to model and predict 
ecosystem-wide impacts of acidification; 
and

•	 Evaluate the sensitivity of nutritionally and 
economically important subsistence and 
industry species to assess socioeconomic 
impacts. 

Acidification in the Alaska Region

OA poses unique economic, nutritional, and socie-
tal concerns to Alaska communities. With a greater 
area of Exlusive Economic Zone (EEZ) waters and a 
longer coastline than that of the entire contiguous 
U.S., monitoring ongoing OA and understanding 
ecological and social consequences of OA in Alas-
ka represents a major challenge. Alaska fisheries 
accounted for more than 60% of total U.S. harvests 
by weight in 2016 (Fissel et al., 2017), supporting an 
estimated 36,800 full-time jobs and $5.2 billion in 
total output for the U.S. economy (McDowell Group, 
2017). In addition to these economic benefits, the 
harvest of marine resources plays a critical role in 
the identities and well-being of Alaska communi-
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ties. More so than any other Americans, Alaskans 
rely upon subsistence harvests of marine resources 
to meet their daily nutritional needs (Fall, 2012).

In order to continue evaluating, understanding, and 
responding to the threat of OA to Alaska, NOAA will 
continue to maintain and build partnerships with 
regional academic institutions, other federal and 
state agencies, local industries, communities, and 
tribal members and governments. Here, we discuss 
the ongoing monitoring efforts and scientific un-
derstanding of OA on Alaska marine ecosystems in 
the Gulf of Alaska and Eastern Bering Sea. To learn 
more about NOAA’s work along the northern Alaska 
coast, refer to Chapter 4: Arctic Region Acidification 
Research Plan. 

Research conducted over the last decade has 
shown that Alaska waters are especially vulnerable 
to OA. Due to long-term preconditioning that results 
in naturally elevated carbon dioxide (CO2) in water 
masses delivered to the region and increased CO2 
solubility of cold seawater, even small accumula-
tions of anthropogenic CO2 can produce relative-
ly large changes in carbonate chemistry (Fabry et 
al., 2009; Carter et al., 2017, 2019a). Regional and 
seasonal processes that influence acidification pat-
terns include advective transport, riverine discharge 
loaded with organic carbon, seasonal sea ice cycles 
that can dilute alkalinity impacting buffering capac-
ity, and the strong biological pump that can amplify 
long-term signals. Because the effects of OA are 
expected to be observed first in these high latitude 
seas, they have been considered critical “bellweath-
ers” of the OA impacts on a global scale (Fabry et 
al., 2009).

Direct calculations of anthropogenic CO2 absorbed 
by seawater surrounding Alaska indicate concentra-
tions ranging from 50-55 µmol kg-1 in surface wa-
ters as of 2015 (Carter et al., 2017, 2019a). Some 
evidence suggests that seasonal conditions am-
plified by anthropogenic CO2 have resulted in the 
dissolution of marine carbonates in the Bering Sea 
(Cross et al., 2013; Mathis et al., 2015a), although 
the contribution of anthropogenic CO2 to this disso-
lution—and the source of carbonate minerals being 
dissolved (terrestrial, sedimentary, biogenic)—re-
mains unclear.

In the past ten years, significant progress has been 
achieved in understanding the spatial and tempo-
ral variability of OA in Alaska waters and its poten-
tial consequences to organisms, ecosystems, and 
Alaska communities. NOAA research on important 
commercial crab fisheries and groundfish is critical 
for preparing commercial fisheries for the progres-
sion of OA in the region and developing strategies 
to mitigate the impacts of OA on communities and 
economies. For example, many years of research at 
NOAA’s Kodiak Laboratory has demonstrated that 
the young stages of commercially important red king 
crab (Paralithodes camtschaticus) and tanner crab 
(Chionoecetes bairdi) are sensitive to OA, whereas 
young snow crab (Chionoecetes opilio) appear to be 
more resilient (Long et al., 2013a,b, 2016). The sen-
sitivity of red king crab and tanner crab is expected 
to alter the production and profitability of crab fish-
eries in Alaska as OA progresses in the region (Punt 
et al., 2014, in review). Work on Alaska groundfish-
es at NOAA’s laboratory in Newport, Oregon has 
shown similar variation in vulnerability across spe-
cies and life stages. While negative impacts of OA 
were observed in Pacific cod (Hurst et al., 2019) and 
northern rock sole (Hurst et al., 2016) research has 
suggested that many fish species will be most vul-
nerable to indirect effects such as OA-induced loss 
of shelled prey species (Hurst et al., 2017). The im-
pact of OA is expected to be felt most severely in 
those Alaskan communities that have a significant 
reliance on the subsistence harvest of crabs and 
other invertebrates, as well as those with predom-
inantly fisheries-related economies and community 
well-being (Mathis et al., 2015a).

Environmental Monitoring in the Alaska 
Region

Given Alaska’s expansive territory and extreme fine-
scale variability with respect to the carbonate sys-
tem (e.g., at least 6 sub-domains in the Bering Sea; 
Cross et al., 2014), developing an expansive obser-
vation system in Alaska is a particular challenge. 
To meet the challenge, targeted observational data 
must be used in conjunction with model, projection, 
and forecast studies that can increase the tempo-
ral and spatial footprint of OA products used by 
NOAA’s stakeholders (Figure 3.1). To support un-
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derstanding of chemical, physical, and biological 
interactions and maximize application to manage-
ment concerns, observations on commercially and 
culturally valuable habitats are prioritized. Using ob-
servations and models together in this region will 
help provide important context to species response 
studies, economic forecasts, and resilience build-
ing. 

Research Objective 3.1: Characterize 
seasonal cycles of OA and regional 
vulnerabilities
Species response studies rely on an understanding 
of the intensity, duration, and extent of OA exposure 
across organismal life cycles. Collecting the data to 
support the species and ecosystem sensitivity anal-
yses requires use of multiple observational tools 
that assess variability of ocean carbonate chemis-
try in both time and space.

Action 3.1.1: Maintain fixed-site moored observa-
tion network including existing moorings such as 
M2 and GAK. These moorings provide information 

on the seasonal cycle and interannual variation of 
OA parameters currently experienced by important 
habitats in the Gulf of Alaska and Bering Sea. Ex-
pansion of the mooring network should target addi-
tional important fishing habitats, such as Bristol Bay 
or Southeast Alaska. 

Action 3.1.2: Conduct ship-based surveys that iden-
tify spatial and regional variability in carbonate pa-
rameters across important fisheries habitats. This 
should include sampling efforts co-located with 
fisheries population surveys in order to elucidate 
potential relationships between OA data and fisher-
ies population data. 

Action 3.1.3: Conduct ship-based process studies 
to improve fundamental understanding of OA driv-
ers including impacts of advective transport, river-
ine discharge, seasonal ice melt, pulses of primary 
productivity, benthic respiration, and biological re-
sponses. Process studies help evaluate the rates 
and fluxes that are critical to reducing uncertainty 
in models. 

Figure 3.1. Ocean observing and forecasting system for the Gulf of Alaska and the Bering Sea between 2011 and 2019, as supported by 
the NOAA Ocean Acidification Program. Blue dots are discrete sampling stations occupied during 2015 and (projected) 2021. Blue triangles 
denote the location of two long-term moorings measuring sea-air exchange of pCO2. Gray tracklines indicate surface observations collect-
ed from autonomous vehicles. The background shading indicates model outputs for annual average surface aragonite saturation state in 
the Gulf of Alaska (GOAGOA OA model) and the Bering Sea (Bering10K model). The Gulf of Alaska model output is for the year 2009 and the 
Bering Sea model output is averaged over 2003–2012.
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An experimental set up for measuring seawater carbon dioxide 
(CO2) aboard the R/V Thomas G. Thompson. Credit: Jessica 
Cross/NOAA

Research Objective 3.2: Characterize future 
OA trajectories at local to regional spatial 
scales
Projections and forecasts from regional models 
help identify the future impacts of OA on commer-
cial and subsistence fishing in Alaska over a broad 
spatial scale. 

Action 3.2.1: Support and validate existing regional 
ocean models for short and long-term forecasting. 
Regional model projections of OA quantify changes 
in carbonate parameters at high-spatial resolution 
under multiple climate emissions scenarios, which 
can inform species response studies. Seasonal 
forecasts provide an estimate of OA exposure on 
the short timeframes relevant for fishery communi-
ties. 

Action 3.2.2: Develop OA indicators that link eco-
system exposure to OA and fisheries population 
dynamics. Historical and forecasted trends in key 
ecosystem indicators are routinely used by fishery 
managers. Development of an OA indicator will im-
prove forecasts of OA ecosystem impacts and cre-
ate a management-focused OA product for Alaska. 

Research Objective 3.3: Develop a 
distributed, community-level coastal 
monitoring network
Alaska communities are distributed along a vast 
coastline, many of which are isolated from sur-
rounding communities, accessible only by air or sea. 
The impacts of OA on many of these communities 

will result from the local impacts on subsistence 
harvest fisheries and community-level industries 
(e.g., aquaculture operations). However, current 
oceanographic models are not sufficiently resolved 
to predict the OA conditions in these highly variable 
coastal regions. Therefore, understanding and mit-
igating the localized impacts of OA will require lo-
calized monitoring at multiple sites along the Alas-
kan coastline. In order to address these needs, an 
evolving network of coastal sites with regular sam-
pling and carbonate system analysis has been es-
tablished through the cooperation between NOAA, 
local communities, and shellfish growers. 

Action 3.3.1: Develop information networks and 
data management procedures to ensure accurate 
and timely reporting of OA conditions. 

Action 3.3.2: Work with local communities and 
shellfish growers to identify local monitoring needs. 
Provide training and technical expertise to sustain 
and further develop Alaska’s coastal OA monitoring 
network through establishment of additional OA 
monitoring sites. 

Action 3.3.3: Provide high spatial and temporal res-
olution data from this network to meet real-time 
monitoring needs of local communities and to im-
prove our understanding and forecasting of coastal 
acidification throughout Alaska.

Biological Sensitivity in the Alaska 
Region

Over the last decade, research at the Alaska Fisher-
ies Science Center has examined the sensitivity of 
commercially important Alaska crab and groundfish 
species in the Gulf of Alaska and Bering Sea (Fig-
ure 3.2). These results have demonstrated import-
ant differences in sensitivity between species and 
among life stages within species. They have also 
demonstrated variation in the primary mechanisms 
by which OA will affect the productivity of specif-
ic fishery species. Laboratory studies have shown 
that crab species differ in their sensitivity to OA with 
Tanner crab (Long et al., 2013a, 2016; Swiney et al., 
2016) and red king crab (Long et al., 2013a,b; Swin-
ey et al., 2017) being the most sensitive, whereas 
blue king crab (Long et al., 2017) and snow crab ap-
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pear to be more resilient (W.C. Long, unpublished 
data). Among groundfishes, larval and juvenile wall-
eye pollock didn’t appear to suffer negative effects 
of OA in the lab (Hurst et al., 2012, 2013), but young 
northern rock sole and Pacific cod were impacted 
(Hurst et al., 2016, 2019). These results provide crit-
ical decision support information for the manage-
ment of Alaska fisheries and the communities that 
rely upon these resources. 

While significant advances have been achieved in 
quantifying the responses of Alaska marine species 
to OA, many unknowns still exist and hinder the sci-
entific capability of fully predicting OA impacts on 
critical species. To date, most of the research has 
focused on commercial crab and selected ground-
fish species; there are many other species that have 
not yet received sufficient research attention. In 
particular, salmon are critical in Alaska as commer-
cial, sport, and subsistence species and sensitivity 
to acidification has yet to be examined across this 
species group. Although bivalves are known to be 
sensitive to OA (Harvey et al., 2013), there are many 
bivalve species including weathervane scallops (Pa-
tinopecten caurinus), razor clams (Siliqua patula), 
geoduck (Panopea generosa), and littleneck clams 
(Leukoma staminea) that have commercial or sub-

sistence value and need to be investigated. More 
recent efforts to evaluate the sensitivity of salmon 
and bivalves have begun in partnership with univer-
sities in the northwest and Alaska. 

OA is also expected to impact lower trophic lev-
el (LTL) species, but there has been little LTL OA 
research to date in Alaska. Some of these lower 
trophic level species are food web “bottlenecks,” 
critical prey species that funnel energy from phyto-
plankton up to larger organisms. Impacts on these 
bottleneck species (e.g., krill, pteropods, copepods, 
and shrimp) will quickly spread throughout the food 
web potentially disrupting population productivity 
of commercially important fish and crabs as well 
as protected and culturally important species. Food 
web disruptions are expected to be the primary 
mechanism of OA effects on marine mammals and 
some fish species in Alaska (Mathis et al., 2015a; 
Hurst et al., 2016). Therefore, understanding the 
sensitivity to OA of key, lower trophic level species 
will be critical to predict the consequences of OA to 
the Alaskan economy and communities.

To date, research has largely focused on the effects 
of OA on physiological responses such as growth 
and reproductive success, but other responses, 
such as changes in the sensory functions can also 

Figure 3.2. Ocean acidification is expected to impact crab and other marine resources through direct effects of elevated CO2 and reduce 
pH, indirect effects on predators and prey, and through interactions with other environmental factors and stressors. Graphics: Rebecca 
White/NOAA
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be affected (Clements & Hunt, 2015), and could 
have implications for foraging, predator avoid-
ance, or mate-finding behaviors. Negative effects 
of OA may be partially ameliorated by acclimation 
and adaptation. This can be partially addressed by 
identifying the mechanisms behind the physiolog-
ical responses to OA using gene expression anal-
ysis and proteomics, and by quantifying inter- and 
intra-specific differences in those responses. Fur-
ther, carryover effects, transgenerational effects, 
and evolutionary potential must be explored using 
experiments that extend over multiple life-history 
stages and generations and via targeted breeding. 
This will allow researchers to estimate the extent 
to which species will be able to adapt to changing 
oceanic pH. Recent research has been initiated to 
explore the detailed physiological effects of OA on 
marine species (specifically crabs), including the ef-
fects on the immune system (Meseck et al., 2016) 
as well as shell structure and function (Coffey et al., 
2017). In fishes, OA is expected to have the biggest 
impact on the sensory and behavioral systems that 
drive feeding and predator avoidance. Work exam-
ining these effects has, so far, been conducted only 
for larval Pacific cod (Hurst et al., 2019) and juvenile 
pink salmon (Ou et al., 2015). 

Finally, OA is not occurring in isolation, declining 
ocean pH is co-occurring with large-scale chang-
es in temperatures, oceanic oxygen levels, sea ice 
cover, and freshwater inputs in addition to localized 
habitat modifications. Very little work has been done 
on the interaction between OA and these stressors. 
These interactions can be complex and identifying 
which stressors are mostly likely to co-affect key 
species and performing experiments to elucidate 
the response is critical (Breitburg et al., 2015). Such 
experiments will require investment in laboratory 
infrastructure as maintaining experimental condi-
tions becomes exponentially more challenging as 
additional factors are examined. 

Increasing research focus on the ecosystem-wide 
effects of OA will enhance understanding of the 
cumulative effects on ecosystems and fisheries. In 
the region this will be critical to informing protection 
and management of fisheries, protected species, 
and ecosystems and to identify risk and evaluate 
adaptation measures. New and existing food-web 

models can be modified to include climate and OA 
drivers. Recent advances in climate-informed mod-
eling include ongoing efforts to couple food web 
models (e.g., CE-size-spectrum; Reum et al., 2019, 
2020), climate-enhanced groundfish assessment 
models (Hollowed et al., 2020) and individual based 
models for snow crab (Stockhausen et al., in prep) 
to environmental indices derived from high reso-
lution ROMS-NPZ models (Hermann et al., 2019). 
Inclusion of mechanistic OA linkages are now pos-
sible through the incorporation of carbonate dynam-
ics in ROMS models, which reveal distinct seasonal 
and spatial patterns in OA (Pilcher et al., 2019), and 
which can be projected to evaluate future changes in 
exposure across space and time. Such projections, 
linked statistically or deterministically to key pro-
cesses in biological models (e.g., physiology, preda-
tion, behavior, distribution, growth) could help reveal 
sensitive species and interactions, emergent non-in-
tuitive outcomes of cascading impacts, and poten-
tial attenuation/amplification of cumulative effects 
of multiple stressors (e.g., warming, OA, fishing). 
Management strategy evaluations that evaluate the 
degree to which spatial and harvest management 
tools can counter OA and climate-driven impacts 
will further help reveal inherent tipping points and 
thresholds under various adaptation goals and pro-
vide climate-informed scientific advice for decision 
making (Holsman et al., 2019; Karp et al., 2019; 
Gaines et al., 2018).

Alaska brown bears depend on salmon that are potentially 
vulnerable to acidification as a food source. Credit: Crew and 
Officers of NOAA Ship Fairweather
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Research Objective 3.4: Characterize 
sensitivity and adaptive potential of critical 
resource species to OA and other stressors
Species response research should evaluate the 
multi-stressor impacts of OA combined with warm-
ing, hypoxia and other environmental variables. 
Species response research should also include 
consideration of the effects of natural variation in 
environmental conditions (e.g., temperature, salin-
ity, dissolved oxygen) on species responses to OA.

Action 3.4.1: Conduct experiments to understand 
the range of life-stage responses of OA and associ-
ated environmental stressors.

Action 3.4.2:  Conduct experiments on potential for 
organismal acclimation and transgenerational ad-
aptation to future environments.

Action 3.4.3: Expand research to include under-stud-
ied species including Alaska salmon and bivalves 
that have commercial and subsistence value.

Action 3.4.4: Expand experimental system capa-
bilities to incorporate time-varying environmental 
conditions and expand capacity for multi-stressor 
experiments.

Research Objective 3.5: Examine sensitivity 
of critical lower trophic level “bottleneck” 
species to OA
Improving the fundamental understanding of LTL 
species that are critical to Alaska ecosystems to es-
timate the indirect impact on commercial and sub-
sistence value species. 

Action 3.5.1: Conduct OA-sensitivity studies on re-
gionally important ecosystem drivers such as krill, 
bivalves, echinoderms, copepods, pteropods, and 
shrimps. 

Action 3.5.2: Apply phylogenetic and trait-based 
analyses to identify sensitive species that have 
broad impact on the food web.

Action 3.5.3: Use these analyses to help identify 
species that may serve as bio-indicators of OA im-
pacts in the region.

Research Objective 3.6: Identify the 
ecosystem-wide impacts of OA 
A better understanding of the multi-faceted impacts 
of OA across species groups and trophic levels will 
improve understanding of the cumulative effects 
on ecosystems and fisheries. This is critical to in-
forming protection and management of fisheries, 
protected species, and ecosystems and to identify 
risk and scope of adaptation measures. 

Action 3.6.1: Conduct laboratory experimental stud-
ies to quantify the effects of OA and in situ field ob-
servations to validate and parameterize OA impacts 
to biological couplings (predator-prey interactions) 
in food web and climate-enhanced models.

Action 3.6.2: Improve understanding of responses 
to OA by incorporating consideration of environ-
mental and ecosystem variability including episodic 
warming, harmful algal blooms, and mass mortality 
events.

Action 3.6.3: Develop integrated climate-biologi-
cal-socioeconomic models that link the physiology, 
growth, behavior, and distribution of species to spa-
tial and temporal patterns of corrosive water expo-
sure will allow for evaluation of direct and cascad-
ing effects of OA on the social-ecological system. 

Human dimensions in the Alaska 
Region

The seafood industry is a major source of employ-
ment in Alaska, employing more than 50 thousand 
workers earning $2 billion in total annual income 
(McDowell Group, 2017). The nation’s largest, and 
most valuable, crab fishery occurs in waters off 
the coast of Alaska and is potentially susceptible 
to impacts from OA. Over the last decade, the pri-
mary goal of research regarding the socioeconom-
ic impacts of OA in the Alaska region has been to 
forecast biological and economic effects on com-
mercially important Alaska crab and fish stocks. 
To evaluate potential impacts, prior research devel-
oped bioeconomic models that relate direct effects 
of OA to future changes in stock productivity, mea-
sured in terms of declining yields and income over 
time. Moreover, direct effects of OA on the fishing 
industry create indirect effects for other industries, 
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which were evaluated using a regional economic 
model for Alaska (Seung et al., 2015). In present val-
ue terms, the welfare loss for Alaskan households 
from cumulative impacts of OA in the coming de-
cades on one crab stock, Bristol Bay red king crab, 
could exceed a billion dollars. Bioeconomic mod-
els were also developed for Tanner crab and snow 
crab, in the Eastern Bering Sea. The next phase of 
research on human dimensions of OA in the Alas-
ka region will expand focus to include impacts on 
non-commercial activities, such as subsistence use, 
through the development of coupled social-ecolog-
ical models.

Localized and species-specific responses to OA 
may lead to changes in the composition and yields 
of harvested species, plus the location and acces-
sibility of harvestable resources. Direct and indirect 
climate-driven changes in the productivity and distri-
bution of species can affect bycatch risk and inter-
actions among fisheries, as well as other sectors in 
ways that may differentially perpetuate risk across 
coastal communities and limit the scope for adap-
tation to climate change (Himes-Cornell & Kasper-
ski, 2015; Barange et al., 2014, 2018). Integrated 
modeling of OA effects on the coupled social-eco-
logical system, such as technical interactions be-
tween industries, can help reveal cumulative im-
pacts on marine resource-dependent communities. 
An example that demonstrates the importance of 
these interactions is bycatch of Tanner crab in the 
eastern Bering Sea snow crab fishery, the largest 
and most valuable Alaska crab fishery. Snow crab 
are insensitive to direct effects of OA, but indirect 

effects arising from technical interactions with Tan-
ner crab, which are sensitive, could constrain future 
yields of snow crab (Punt et al., in review). Further, 
interest has been growing in commercial maricul-
ture of seaweeds and shellfish in south-central and 
southeast Alaska. It is currently unknown how OA 
will impact this growing industry. In recognition of 
the importance of spatial heterogeneity and dy-
namic feedbacks within and between social and 
ecological systems (Holsman et al., 2017), coupled 
social-ecological models will be developed that are 
community-specific to evaluate impacts on individ-
ual ports, fleets, industry sectors, and the communi-
ties they support.

Researcher collects water sample to measure dissolved carbon 
dioxide levels. Credit: NOAA

Finally, to date, research to forecast effects of OA 
in Alaska has prioritized commercially important 
species based on the potential for state-wide eco-
nomic impacts. However, to many Alaska communi-
ties, subsistence use and cultural association with 
marine resources is as important as local economic 

Commercial fishing is a major component of the economy throughout Alaska’s coastal communities. Credit: NOAA
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benefit. Subsistence communities harvest a range 
of marine species and rely on these local resources 
for commerce, cultural identity, and the subsistence 
way of life. Forecasting effects of OA on subsistence 
species is essential for monitoring and responding 
to future impacts of OA in the Alaska region.

Research Objective 3.7: Improve 
assessment of socioeconomic impacts of 
OA on fisheries-dependent communities
Developing coupled social-ecological models that 
are community-specific will be important to evalu-
ating the impacts on individual ports and the fishing 
fleets they support.

Action 3.7.1: Use food web models to account for 
direct and indirect OA effects on multiple species 
and incorporate these effects in spatial bioeconom-
ic models that represent biological and technical 
interactions among species and stocks.

Action 3.7.2: Analyze direct and indirect effects 
of OA and develop and apply a new framework for 
biological and bioeconomic reference points with 
multiple species that includes aggregate maximum 
sustainable yield (MSY) and multispecies maximum 
economic yield (MEY).

Action 3.7.3: Consider OA ontogenetic effects on 
growth and survival of animals in order to assess 
tradeoffs and potential co-benefits of various man-
agement interventions that target different life-his-
tory stages and population productivity bottlenecks.

Action 3.7.4: Use integrated assessment models 
to inform stock assessment status and recovery 
plans.

Research Objective 3.8: Assess community 
sensitivity and resiliency to OA impacts on 
critical nutritional and cultural resources
To more comprehensively understand the societal 
and cultural impacts of OA on Alaska communities, 
assessments of OA will be expanded to include sen-
sitivities of critical nutritional and cultural resource 
species. Research will also directly evaluate the 
impacts of OA-induced changes in marine ecosys-
tems to well-being of coastal communities.

Action 3.8.1: Work with local communities includ-
ing indigenous peoples to identify locally-important 
species for additional OA sensitivity analyses and 
work with community leaders to disseminate the 
findings of these analyses. 

Action 3.8.2: Analyze the economic and sociologi-
cal effects of OA-induced food web alterations that 
may impact the harvest of nutritionally and cultural-
ly important species including large marine mam-
mals. 

Action 3.8.3: Support community awareness of OA 
impacts and work with local stakeholders to identify 
economic and sociological sensitivities and evalu-
ate and implement adaptive responses.
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Abstract

The Arctic Region includes the broad continental 
shelf areas surrounding northern Alaska, including 
the Northern Bering, Chukchi and Beaufort seas (for 
information on the Gulf of Alaska and Eastern Ber-
ing Sea, refer to Chapter 3: Alaska Region). Ocean 
acidification (OA) in this region is influenced by in-
creasing concentrations of atmospheric carbon dis-
solving in cold surface waters as well as regional 
changes in seawater chemistry driven by advective 
input from neighboring regions, sea ice melt and 
riverine input as well as seasonal fluctuations in 
productivity that both draw down and release dis-

solved carbon in Arctic waters. The Arctic and its 
marine ecosystems provide food and cultural identi-
ty to subsistence communities that call the Alaskan 
Arctic home. While the U.S. Arctic is not currently 
home to a commercial fishery, northward migration 
of major fisheries stocks (e.g., Alaska pollock, Ther-
agra chalcogramma, and Pacific cod, Gadus macro-
cephalus) from the Eastern Bering Sea may support 
a commercial fishery in the future. NOAA’s Arctic 
Region research goals are to:  

•	 Support targeted OA monitoring to 
increase understanding of progression and 
processes driving OA in the vast region 
of the Arctic and to inform regional OA 
models;

•	 Conduct laboratory studies on the 
sensitivity and resilience of economically 
and ecologically important species 
to better understand ecosystem-level 
responses to OA and prudent management 
approaches; and

•	 Use physical and biological understanding 
of Arctic OA to inform and develop regional 
adaptation strategies for communities and 
fisheries management decisions.

Acidification in the Arctic Region

OA is rapidly advancing in the Arctic, producing 
newly corrosive conditions (e.g., Tanhua et al., 2009; 
Mathis et al., 2015a; Cross et al., 2018; AMAP, 2018). 
Other factors of rapid environmental change 

4. Arctic Region Acidification 
Research 
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occurring in the Arctic, including advective transport 
(Tanhua et al., 2009; Qi et al., 2017), changes in the 
seasonal sea ice cycle, increasing river discharge, 
and more frequent upwelling exacerbate the re-
gion’s naturally high vulnerability to OA. As a result, 
persistently corrosive water masses have emerged 
(Cross et al., 2018) and expanded (Qi et al., 2017) 
over the last several decades, generating unknown 
consequences for marine ecosystems.  

U.S. national interests in the Arctic center on the 
northern Bering, Chukchi, and Beaufort seas. These 
shelf areas are the gateway to the international wa-
ters of the Arctic Ocean. The ecosystems in these 
areas are critical for cultural preservation given that 
they support important subsistence fisheries. While 
no commercial fisheries currently operate in the 
Arctic, some species are already federally managed 
for sustainability and conservation (e.g., snow crab, 
Chionoecetes opilio; Arctic cod, Boreogadus saida; 
and saffron cod, Eleginus gracilis). Although the 
vulnerability or resilience of these species to OA re-
mains unclear, evidence suggests that the vulnera-
bility of early life stages of some crab species to OA 
could eventually lead to declines in the adult popula-
tion (e.g., king and tanner crab; Long et al., 2013a, b; 
Swiney et al., 2016;), while fish species such as Arc-
tic cod may be more resilient to OA stresses (Kunz 
et al., 2016). Other non-managed species in the Arc-
tic food web have also shown some vulnerability to 
OA e.g., pteropods and Arctic bivalves, important 
food sources for other species (Darnis et al., 2008, 
Lischka et al., 2011; Walkusz et al., 2013; Goethel et 
al., 2017).

Across the Arctic, NOAA is actively engaged in sci-
ence and stewardship associated with recent, rapid 
environmental changes (see NOAA, 2014). Ocean 
warming, changes in atmospheric and oceanic cir-
culation patterns, and sea-ice losses are rapidly 
propagating through the food web because Arctic 
ecological linkages lack complexity (comparatively 
few species and short food chains, which do not 
adapt well to a rapidly changing environment) and 
have stronger species interactions. For example, 
increases in primary production and shifts in low-
er trophic taxa are already visible in the diet and 
body condition of upper trophic marine mammals 
and birds (e.g., lower body mass and lipid content), 

which could impact their subsistence value (e.g., 
Moore & Gulland, 2014). NOAA supports research 
and monitoring of ongoing changes in these areas 
by contributing to the Distributed Biological Obser-
vatory, a network of ecosystem hotspots designed 
as an Arctic ecosystem change detection array. 
Recently, NOAA has also partnered with the Depart-
ment of Fisheries and Oceans – Canada to explore 
more of the Arctic region through a bi-lateral part-
nership, bridging the gap between U.S. Arctic terri-
tories in the Pacific Arctic and the North Atlantic. 

Given the inherent vulnerability of the Arctic’s sim-
ple food web, OA introduces a significant addition-
al risk factor to ecosystems already experiencing 
multiple stressors. The research community is 
beginning to explore these vulnerabilities in detail. 
The first reviews of current environmental expo-
sure to corrosive conditions were completed over 
the last decade (Arctic Ocean: Yamamoto-Kawai et 
al., 2009; Bates & Mathis, 2009, Tanhua et al., 2009; 
AMAP, 2013, 2018; Atlantic: Azetsu-Scott et al., 
2010, Shadwick et al., 2011; Pacific: Semiletov et al., 
2007; Bates et al., 2011; Evans et al., 2015; Mathis 
et al., 2009, 2012, 2015a; Miller et al., 2014; Cross 
et al., 2018). Estimates of anthropogenic carbon di-
oxide (CO2) concentrations in the region range from 
39 to 62 µmol kg-1 and projections indicate that the 
frequency of exposure to acidified waters is likely 
to become more common over time (e.g., Tanhua 
et al., 2009; Mathis et al., 2009, 2015a; Cross et al., 
2018; McGuire et al., 2009; Steinacher et al., 2009; 
Steiner et al., 2014; Harada, 2016). Understanding 
these components of present and future exposure 
provides a baseline for laboratory studies to assess 
species- and population-specific vulnerabilities for 
U.S. Arctic species. Linking this exposure to the 
ecosystem is a critical next step, especially as the 
research community investigates whether com-
mercial fish stocks could emerge in the U.S. Arctic 
(e.g., Bluhm et al., 2009; Orensanz et al., 2004), or 
whether important subsistence species will decline 
(Moore & Gulland, 2014).  

Overall, Arctic OA research is in its infancy com-
pared to other U.S. regions. As NOAA pursues an 
Arctic observing system that can contribute to OA 
research over the next decade, there is a wealth of 
experience from other regional NOAA acidification 
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networks to draw from. Based on those successes, 
NOAA will pursue OA research in the Arctic over the 
next decade by maintaining and developing part-
nerships with regional academic institutions, other 
federal and state agencies, international partners, 
and local industries and communities to evaluate, 
understand, and respond to the risk that OA poses 
to the U.S. Arctic regions. This will require marked 
increases in efforts to understand OA in the context 
of ongoing ecosystem changes. Emerging OA im-
pacts will be only part of a growing portfolio of other 
stressors for U.S. Arctic residents, and community 
adaptation plans will necessarily need to take into 
account a diverse array of environmental factors.

Environmental Change in the Arctic 
Region

Over the last 10 years, NOAA’s OA research activi-
ties in the Arctic have been limited relative to other 
U.S. regions. As part of its emphasis on long-term 

ecosystem studies, NOAA has participated in sus-
tained monitoring in the Arctic, including through 
the Russian-American Long-term Census of the 
Arctic (RUSALCA; Crane & Ostrovskiy, 2015) where 
carbonate chemistry measurements were collected 
in 2009 and 2012 (Bates, 2015; Mathis et al., 2009, 
2015a; Cross et al., 2018). Building on this legacy, 
NOAA has recently initiated a long-term monitoring 
project for the Pacific Arctic called the Distributed 
Biological Observatory (DBO). The DBO is a field-
based program that makes biological, physical, and 
chemical observations at a series of sites along a 
latitudinal gradient from the Bering to Beaufort seas 
to link biological observations to ongoing environ-
mental changes (Moore & Grebmeier, 2018). While 
the DBO was formally established in 2010, some 
time-series observations in DBO regions date back 
decades. OA observations were added to the DBO 
portfolio in 2017, with some regional observations 
also initiating in 2015 (Figure 4.1). 
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Figure 4.1. Ocean observing system for the Chukchi Sea between 2015 and 2020, as supported by the NOAA Ocean Acidification Program 
and Arctic Research Program. Shown here in blue dots are discrete sampling stations occupied during the Distributed Biological Obser-
vatory missions. Gray tracklines indicate surface observations collected from autonomous vehicles. Background shading indicates the 
MASAM2 daily sea ice concentration (%) from July 1 2019, as a proxy showing how observations fit into typical sea ice conditions. While 
the saildrone tracklines extend well into the basin, an area typically covered by ice as shown, note that these measurements were collected 
in open water conditions.
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Across the research community, OA observations 
in the U.S. Arctic are also relatively new. In the U.S. 
Pacific Arctic, carbon cycle sciences have been pe-
riodically studied only since the early 1980s (1982: 
Chen et al., 1985), with the first large-scale carbon-
ate chemistry mapping programs implemented only 
over the last few decades (e.g., SBI: Bates & Mathis, 
2009, Anderson et al., 2010; ICESCAPE: Bates et al., 
2014b; RUSALCA: Bates, 2015; BLE LTER: Lougheed 
et al., 2020). In part, this lack of observing data is 
due to unique environmental hazards encountered 
in the Arctic. Sea ice is a clear infrastructure chal-
lenge for surface and bottom moorings, as sea-ice 
drafts can reach the ocean bottom in many coastal 
regions. Year-round, long-term monitoring of OA in 
the Arctic occurs only off the shelf in deeper waters, 
where protection from sea ice is more predictable, 
as in Iceland (north of which NOAA maintains an OA 
buoy, Olafsson et al., 2009) and the Beaufort Sea 
(Cross et al., 2018). A lack of infrastructure also cre-
ates substantial barriers to winter time series and 
process studies. Accordingly, most of the under-
standing of OA in the Arctic environment is based 
on observations made during the summer, open-wa-
ter period, which can bias observational climatolo-
gies (e.g., Evans et al., 2015). 

To meet some of these technological challeng-
es, NOAA scientists have recently explored new 
platforms and sensors specifically for Arctic de-
ployments (Cross et al., 2016). Since 2017, a new 
autonomous vehicle (the saildrone) has collected 
seasonal surface CO2 flux measurements in an ef-
fort to supplement those collected by ships (Cross 
et al., 2016; Sabine et al., 2020). NOAA is also ex-
ploring new sub-surface sensors that may be able 
to seasonally collect autonomous measurements 
of total alkalinity (TA) from moored platforms. Im-
portantly, collecting TA measurements may help 
identify OA impacts, including acidification-mediat-
ed dissolution. Sensors that measure dissolved in-
organic carbon (DIC) are also currently under devel-
opment. Combining readily available pCO2 sensor 
data with developing DIC or TA sensor data will also 
help to generate extended carbonate system data in 
a time-series setting. 

NOAA has recently supported regional OA model-
ing efforts in the Bering Sea and the Gulf of Alaska 

(Siedlecki et al., 2017; Pilcher et al., 2019), however 
carbonate chemistry modeling in the Chukchi and 
Beaufort seas remains limited. While global models 
can presently be used to study the Arctic system, 
they often simplify complex processes that can 
be especially important leading to misrepresenta-
tion of their total impact (e.g., freshwater balanc-
es and biogeochemical interactions between land 
and ocean, sea and ice, and within benthic habitats: 
Manizza et al., 2011; Carmack et al., 2016; Steiner 
et al., 2016).

 

Saildrones, capable of making autonomous ocean measure-
ments, waiting at the dock in Dutch Harbor, Alaska before their 
multi-month NOAA research mission. Credit: Saildrone, Inc.

By contrast, regional models offer finer spatial res-
olution and can incorporate high-resolution coastal 
processes. Process studies and long-term monitor-
ing can be used to help build and validate regional 
models. Once developed, these validated models 
will be used to project multi-decadal trends in OA 
and test model performance for seasonal forecasts 
of corrosive water conditions. Furthermore, histori-
cal hindcasts can provide context to long-term eco-
logical time series in the region, illuminating poten-
tial links between ecosystem variability and OA. 

Research Objective 4.1: Targeted 
observations and process studies to 
increase understanding of OA dynamics and 
impacts
Given the limited number of observations in the his-
torical record, time-series and process studies can 
help to resolve key unknowns in the Arctic carbon-
ate cycle. 



NOAA Ocean, Coastal, and Great Lakes Acidification Research Plan |  41

Activity 4.1.1: Quantify anthropogenic CO2 concen-
trations through coastal and open ocean cruises in 
order to constrain rates of anthropogenic coastal 
acidification versus contributions from other pro-
cesses such as advective transport, changing river 
inputs, upwelling rates, source water advection, or 
locally enhanced air-sea exchange.

Activity 4.1.2: Sustain long-term monitoring of car-
bonate chemistry observations linked to biological 
sampling, which will increase our understanding of 
ecosystem impacts of OA.

Activity 4.1.3: Design process studies to help the 
scientific community target key uncertainties in car-
bonate cycling, such as wintertime cycles and sea-
sonal respiration rates.

Research Objective 4.2: Build high-
resolution regional models able to simulate 
fine-scale OA processes
Limited infrastructure and harsh conditions can 
make a spatially extensive carbonate monitoring 
system in the Arctic impractical and cost-prohibi-
tive. High-resolution regional models will provide a 
broader spatial and temporal context for observa-
tions. 

Activity 4.2.1: Use process studies to generate new 
observations that can be used to validate regional 
models and test their predictive capability. 

Activity 4.2.2: Use validated models to project OA 
trends on multi-year to multi-decadal time frames 
and develop historical hindcasts of OA variables 
that can be used to provide context to existing 
decadal scale ecological time series, such as those 
that underpin the DBO. 

Activity 4.2.3: Use validated models to pursue 
short-term seasonal forecasts of corrosive water 
conditions and other decision support products for 
NOAAs stakeholders in the Arctic region.

Biological Sensitivity in the Arctic 
Region

Few studies have quantified species-specific re-
sponses of Arctic taxa to OA. Some Arctic zoo-

plankton species are negatively affected in labora-
tory studies (e.g., Euphausia superba, Kawaguchi 
et al., 2013; Euphausia pacifica, Cooper et al., 2016, 
and McLaskey et al., 2016; Pseudocalanus acuspes, 
Thor & Oliva, 2015) while at least the juvenile stages 
of a critical forage fish species (Arctic cod, Boreoga-
dus saida) appear resilient to acidified conditions 
(Schmidt et al., 2017; Kunz et al., 2016). Note that 
potentially more sensitive larval stages have not 
been examined yet. There is evidence that some 
species may express an adaptive capacity to cope 
with OA either via phenotypic plasticity or selective 
responses (e.g., Pseudocalanus acuspes, Thor & Du-
pont, 2015; De Wit et al., 2016). However, U.S. com-
mercial, protected, and subsistence species have 
not been evaluated for OA sensitivity and resilience. 
Following the blueprint set by the NOAA Alaska OA 
Enterprise, studies that focus on OA sensitivity of 
taxa in the U.S. Arctic region appear to be the con-
sensus next step. 

In order to quantify the effects of OA on protected 
and managed species and on the ecosystems on 
which they depend, it is imperative to initiate target-
ed, Arctic-specific laboratory and field acidification 
studies. Highest priority species are those for which 
there is a federal management plan (snow crab, Chi-
onoecetes opilio; Arctic cod, Boreogadus saida; and 
saffron cod, Eleginus gracilis) and species import-
ant in the food web such as Hyas coarctatus and 
Ophiura sarsi (NPFMC, 2009). Species of secondary 
import include forage shellfish that are important 
prey for protected species such as walruses and 
bearded seals (Lowry & Frost, 1981). Given the rap-
id pace of environmental change in the Arctic, it is 
also imperative that these studies explore multiple 
stressors (Breitburg et al., 2015). Given that many 
species in Arctic regions are stenothermic, tem-
perature is a critical co-stressor that must be inves-
tigated. Additionally, as the timing and location of 
sea ice breakup changes, pelagic-benthic linkages 
that depend on ice algae may also shift, altering the 
quality and quantity of food to the benthos. Thus, 
experiments examining the effects of food quality 
and quantity in differing OA scenarios will also be 
important. Finally, changes in freshwater input are 
predicted with climate change and so salinity may 
also be an important costressor to consider for 
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some species. Gene expression, metabolomic, and 
proteomic measurements, especially once initial re-
sponse experiments have been performed, will be 
important for understanding the physiological and 
molecular responses to OA in these species. The 
critical importance of multi-stressor experiments in 
the Arctic region make additional NOAA investment 
in laboratory infrastructure essential. Complex ex-
perimental tank setups and intricate control sys-
tems are required to assess multiple stressors with 
scientific rigor.

Zooplankton collected by researchers in the Chukchi Sea, a mar-
ginal sea of the Arctic Ocean. Credit: Lindsey Leigh Graham/
NOAA

Understanding ecosystem level responses to OA is 
critical to help co-develop fisheries management 
and human adaptive strategies in the Arctic.  Estab-
lishing reference points via surveys of biological re-
sources and quantifying changes under ecosystem 
change are critical next steps. The Chukchi Ecosys-
tem Observatory (CEO) is collecting co-located bio-
logical and carbonate data for a moored platform 
(Hauri et al., 2018). From a broad-scale approach, 
the DBO is an excellent framework for studying eco-
system-level OA sensitivity. DBO sites are already 
focused on locations of high productivity, biodiver-
sity, and biological rates of change. NOAA invest-
ment in the DBO efforts will help to establish ref-
erence levels to quantify change in the Arctic and 
link those changes to physical parameters, includ-
ing OA. In addition, the DBO will help to focus re-
search efforts on species particularly vulnerable to 
change. Similar partnerships should also be estab-
lished with other groups involved in ecosystem-lev-
el research to leverage such data in exploring the 

role of OA in the Arctic ecosystem. Further, process 
studies, such as quantifying ice and pelagic prima-
ry production and linking that to carbon flux to the 
benthos will be important in understanding carbon 
cycles and predicting ecosystem-level changes in 
reduced ice conditions. 

As data on species-specific vulnerabilities become 
available, it will be important for modelers to incor-
porate this perspective. It is likely that a suite of 
modeling techniques, including single-species mod-
els, multispecies models, and qualitative models 
will be needed to predict how the ecosystem is like-
ly to change in response to these vulnerabilities. For 
example, incorporating data into modified stock-as-
sessment models (e.g., Punt et al., 2016) will help 
inform adaptation strategies for fisheries manage-
ment, subsistence users, and local communities. In 
contrast, multispecies ecosystem models such as 
the Atlantis model should be used to predict indi-
rect effects on important species and guilds under 
changing conditions (e.g., Marshall et al., 2017). Fi-
nally, qualitative models may be useful, especially 
in data-limited situations, to make large scale pre-
dictions and to focus research efforts on critical 
species and linkages in the system (e.g., Reum et 
al., 2015).

Research Objective 4.3: Conduct laboratory 
studies of OA impacts in economically and 
ecologically important species
In order to quantify the effects of OA on protected 
and managed species and the resulting impacts on 
ecosystems, it is imperative to conduct targeted, 
Arctic-specific laboratory and field OA studies.

Action 4.3.1: Conduct laboratory studies on high-pri-
ority species such as potential fisheries species 
(snow crab, Chionoecetes opilio; Arctic cod, Bo-
reogadus saida; and saffron cod, Eleginus gracilis), 
species important in the food web such as Hyas 
coarctatus and Ophiura sarsi, and species that are 
important food resources for protected species.

Action 4.3.2: Examine OA and temperature interac-
tions in laboratory and field experiments to quantify 
potential synergistic responses to co-stressors.
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Action 4.3.3: Conduct laboratory experiments on 
effects of OA and concurrent stressors, such as sa-
linity and food quality/quantity, using species likely 
to encounter these environmental conditions, which 
exhibit potential vulnerabilities to such conditions, 
and meet qualifications listed in Action 4.3.1.

Action 4.3.4: Use gene expression, metabolomic, 
and proteomic measurements to understand the 
physiological pathways affected by OA, particularly 
for species identified in initial response experiments 
as vulnerable to OA.

Research Objective 4.4: Conduct 
ecosystem-level studies to evaluate OA 
impacts
Characterizing baseline physical and biological con-
ditions, monitoring changes in these ecosystem 
attributes, and performing process studies on key 
species will provide foundational information that 
can be used by the scientific community to model 
and predict ecosystem-level effects of OA.

Action 4.4.1: Establish reference conditions for Arc-
tic ecosystems and invest in sustained ecosystem 
monitoring of important Arctic species and zoo-
plankton.

Action 4.4.2: Perform targeted process studies to 
quantify important ecosystem pathways.

Research Objective 4.5: Biological 
projection and forecast development 
Models will be needed to integrate sensitivity stud-
ies and oceanic observations in order to predict ef-
fects of OA on Arctic species and ecosystems and 
to understand the impacts on, and guide the adap-
tation of, human communities.  

Action 4.5.1: Use appropriate modeling techniques, 
including single-species, ecosystem, and qualitative 
models, to understand the likely effects of OA in the 
Arctic.

Human Dimensions in the Arctic Region

Commercial fisheries in the Arctic Ocean account 
for a tenth of the world’s total fish catch (AMAP, 
2013; CAFF, 2013). Additionally, many of the region’s 

residents rely on these fisheries for food, economic 
security, and cultural benefits. While no commercial 
fisheries or Marine Protected Areas (MPAs) current-
ly exist in U.S. Arctic waters, a number of conser-
vation management activities have been enacted 
to ensure the protection of sustainable fisheries 
across the Arctic in the event that fisheries or MPAs 
emerge, as noted in NOAA’s Arctic Action Plan 
(NOAA, 2014). The U.S. Arctic Fisheries Manage-
ment Plan limits commercial harvests in U.S. Arctic 
waters until sustainable management practices can 
be devised (NPFMC, 2009). 

This conservation practice has spread across the 
Arctic region. In 2017, the U.S. and four other na-
tions with waters adjacent to the High Seas portion 
of the Central Arctic Ocean (CAO) agreed to interim 
measures for the prevention of unregulated com-
mercial fishing in the CAO High Seas (US ARC, 2019; 
Hoag, 2017). The agreement included a 3-year map-
ping program, to be followed by a long-term moni-
toring initiative, exploring the distribution of species 
with a potential for future commercial harvests. 

The Arctic is home to ice floes that can pose challenges to con-
ducting research in the Arctic, but also yield unique ecosystems 
and ocean conditions. Credit: Jessica Cross/NOAA

The science and implementation plan for this agree-
ment developed by the Fifth Meeting of Scientif-
ic Experience on Fish Stocks in the Central Arctic 
Ocean (FiSCAO) includes mapping data on carbon-
ate chemistry, while developing management prac-
tices that incorporate OA stresses. Although there 
will be both winners and losers in acidified ecosys-
tems, the magnitude and rate of changes anticipat-
ed in Arctic carbon chemistry combined with other 
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habitat changes are likely to impact ecosystems 
and human communities (AMAP, 2018). In U.S. 
sub-Arctic regions, previous work has indicated that 
early actions to support sustainable fisheries in the 
face of OA will be critical for managing future out-
comes (Punt et al., 2016; Seung et al., 2015). Even 
where OA is not the primary environmental stressor, 
it could interact with or amplify other stressors like 
warming, hypoxia, and loss of sea ice. 

In addition to threatening the growth of Arctic com-
mercial fisheries, OA also has the potential to im-
pact subsistence and cultural resources, including 
indirect effects on marine mammals. While perma-
frost thaw, sea-level rise, and coastal erosion are 
likely to represent the greatest challenge to these 
communities (e.g., Berman & Schmidt, 2019; Hjort et 
al., 2018), research findings of OA effects may help 
inform further human adaptation strategies (Met-
calf, 2015). Previous work has shown that the most 
pronounced OA exposure occurs in areas that also 
support critical populations of seabirds, walrus, and 
bowhead whales (Cross et al., 2018). The communi-
ties that rely on these populations have emphasized 
the need to understand and adapt to coming chang-
es in the marine environment (Mathis et al., 2015a; 
ICCA, 2015; Lam et al., 2016), with these goals ex-
pressed in NOAA’s Arctic Action Plan (NOAA, 2014). 
Here we emphasize two objectives that focus on 
supporting human communities through sustain-
able fisheries management, in the event that an 
Arctic commercial fishery does emerge, as well as 
other forms of community adaptation support. 

Research Objective 4.6: Support NOAA’s 
contributions to U.S. Arctic fisheries 
management 
NOAA should provide relevant OA products and 
data to fisheries management and conservation 
efforts in the Arctic. These products should be de-
signed with managers and stakeholders in mind in 
order to maximize beneficial outcomes. 

Action 4.6.1: Design targeted carbonate chemistry 
products that support the U.S. Arctic Fisheries Man-
agement Plan and the FiSCAO Science Plan.

Action 4.6.2: Include OA risk information when de-
signing fisheries management strategies for the 
U.S. Arctic region. 

Research Objective 4.7: Assess regional 
adaptation strategies to OA coupled with 
environmental change
Many Arctic communities are already struggling 
with impacts to subsistence harvests. Most nota-
bly, reduced and destabilized sea ice is limiting ac-
cess to large marine mammals for traditional sub-
sistence hunting practices. Additional risks from OA 
could compound these stresses. 

Action 4.7.1: Survey commercial, local, and indige-
nous communities to better understand stakeholder 
and decision maker needs for OA information and 
integrate traditional knowledge and perspectives 
into decision support products. 

Action 4.7.2: Work with organizations that have 
links to communities, including the Arctic Water-
ways Safety Committee, Adapt Alaska, and the 
Alaska Ocean Observing System’s (AOOS) Alaska 
OA Network (AK-OAN) to develop and transition de-
cision support products. 
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