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Abstract

The Mid-Atlantic Bight Region includes the east-
ern United States continental shelf area extending 
from Cape Hatteras, NC to Cape Cod, MA. Ocean 
acidification (OA) in the region is modified by ocean 
circulation patterns, particularly influenced by the 
Labrador Sea water that forms the cold pool, nat-
ural seasonal and decadal variability, and eutrophi-
cation. The Mid-Atlantic Bight is home to important 
commercial shellfisheries and finfish, which have 
shown some sensitivity to OA. NOAA’s Mid-Atlantic 
Bight Region research goals are to:

•	 Improve OA forecasts across daily to 
decadal timescales informed through a  
modified regional observing system that 
better  quantifies the primary drivers of 

vertically resolved carbonate dynamics 
with an increased emphasis at reactive 
interfaces (e.g., sediment boundary, 
land-ocean, etc.) in context with other 
environmental change;

•	 Determine how OA in concert with other 
stressors impact ecologically and/or 
economically important marine species, 
with a focus on understanding impacts to 
aquaculture stocks; 

•	 Evaluate costs and benefits of mitigation 
and adaptation strategies for communities, 
ecosystems and economies; and

•	 Promote integration of OA understanding 
into regional planning and management.

Acidification in the Mid-Atlantic Bight 
Region 

Presented in this chapter are the mid-term priorities 
and objectives of NOAA’s OA research, modeling, 
and monitoring interests specific to the waters of 
the Middle Atlantic Bight (MAB; Figure 9.1). The 
MAB extends from Cape Hatteras, NC, to the south-
ern coast of Cape Cod, MA, and is part of the North-
east U.S. Continental Shelf Large Marine Ecosystem 
(LME). For information on the northern region of the 
Northeast LME, please refer to Chapter 10, New En-
gland Region Acidification Research Plan. 

The MAB is characterized by a large continental 
shelf, multiple shelf break canyons, five geographi-
cally distint estuarine ecosystems (Chesapeake Bay, 
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Delaware Bay, Long Island Sound, the coastal bays 
in Maryland and Virginia, and the Albemarle-Pamli-
co Estuarine System), and barrier islands that en-
close shallow coastal bays (e.g., Great South Bay 
(NY), Barnegat Bay-Little Egg Harbor Estuary (NJ), 
Assawoman Bay (DE), and Chincoteague Bay (MD).  
Polar water from the Labrador Current and warm-
er water from the Gulf Stream meet in this region, 
resulting in dynamic distributions of temperature, 
salinity, and density over vertical and lateral scales.  
During the fall, storms (i.e., hurricanes, Nor’easters) 
bring strong winds, which lead to a well-mixed wa-
ter column (Lentz, 2003; Rasmussen et al., 2005). 
However, during the late spring/early summer 
strong surface heating and weakening winds lead 
to the development of a thermocline about 20 me-
ters deep, spread across the entire shelf, creating a 
continuous mid-shelf “cold pool” (Figure 9.2; Gold-
smith et al., 2019; Wang, 2016). The “cold pool” has 
been linked to the distribution and recruitment of 
commercial and recreational fin and shellfish spe-

cies in this region (Powell et al., 2020; Weinberg, 
2005). The MAB is also characterized by regions of 
upwelling along the shelf break (Benthuysen et al., 
2015; Brooke et al., 2017). Along the coast, south-
west winds associated with the Bermuda High and 
Ekman forcing can also result in upwelling regions 
(Glenn et al., 2004). Upwelling areas in the MAB are 
characterized with enhanced primary productivity, 
intense fishing activity, and low dissolved oxygen 
concentrations.

Key physical and biogeochemical drivers, such as 
seasonal changes in net-community production, 
temperature, salinity, physical mixing, and nutrient 
loading, in addition to air-sea gas exchange influ-
ence acidification in the MAB region.  For example, 
Gulf Stream waters along the southern portion of 
the MAB have elevated aragonite saturation (Ωarag). 
In contrast the less buffered northern region of the 
MAB is influenced by colder southward coastal cur-
rents fed by Labrador Sea (Wanninkhof et al., 2015) 
and Gulf of Maine (Wang et al., 2013) water result-

Figure 9.1. The Mid-Atlantic Bight region with depth, from Southern Massachusetts to Cape Hatteras, NC. Water from the Gulf Stream 
comes in from the south, while the Shelf Break Jet brings water from the North. Warm and cold core rings can be found along the Gulf 
Stream. Credit: NOAA
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ing in comparatively lower Ωarag. Closer to the coast, 
biological activity and eutrophication can affect 
temporal and spatial variability in carbonate param-
eters (Cai et al., 2011; Wanninkhof et al., 2015; Xu 
et al., 2017). Because the MAB supports a diverse 
assemblage of commercially and recreationally 
important finfish (bony and cartilaginous) species 
(Gates, 2009; Sherman et al., 1996), and critical 
shellfish fishing grounds, hatcheries, aquaculture 
beds, and oyster restoration areas, it may prove to 
be an area uniquely vulnerable economically to both 
ocean and coastal acidification.

The MAB has a diverse assemblage of flora and 
fauna including commercially and recreationally im-
portant shellfish and finfish, deep water hard corals, 
soft corals and sea fans, as well as shellfish hatch-
eries, aquaculture leases, and oyster restoration ar-
eas (Dubik et al., 2019; McManus et al., 2018; Mun-
roe et al., 2016; Narváez et al., 2015; Powell et al., 
2020; Schweitzer & Stevens, 2019; Waldbusser et 
al., 2013). Fisheries in the MAB region totaled $800 
million in 2016 with sea scallops, blue crab, and the 
eastern oyster accounting for 56% of the total reve-
nues (NEFSC, 2018; NOAA Fisheries, 2019b). As in 

the Northeast (NE) region, marine aquaculture is ex-
panding in every state with the potential of offshore 
aquaculture throughout the coastal zone, highlight-
ing the importance of characterizing the drivers of 
OA in the MAB. With 5 major estuaries and many 
coastal barrier island bays, eutrophication  may 
contribute substantially to OA in this region (Gold-
smith et al., 2019; Kennish et al., 2007, 2016; Saba 
et al., 2019) affecting growth, survival, and calcifi-
cation of several larval shellfish species (Clements 
& Chopin, 2017; Clements & Hunt, 2014; Gobler & 
Talmage, 2014; Hattenrath‐Lehmann et al., 2015), 
finfish species (Chambers et al., 2014; Perry et al., 
2015), and crustaceans (Giltz & Taylor, 2017; Glan-
don et al., 2018; Glandon & Miller, 2016). Conse-
quently, many coastal communities in the MAB have 
a medium-high to high vulnerability risk to OA, with 
anticipated effects by 2071 (Ekstrom et al., 2015). 
Understanding the physical and biogeochemical 
drivers of OA, organism responses to these drivers, 
and the socioeconomic effects on the fishing and 
aquaculture industries, recreational fisheries, and 
tourism will help determine if mitigation strategies 
need to be implemented in some communities to 
reduce the effects of OA. 

Figure 9.2. Bottom temperatures for part of the Mid-Atlantic region, showing the Cold Pool. Courtesy of: MARACOOS/Rutgers University
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Environmental Change in the Mid-
Atlantic Bight Region

Surveys of surface carbonate chemistry in the MAB 
conducted by NOAA and other research institutions 
have shown large natural variability on decadal 
timescales (Boehme et al., 1998; Wang et al., 2017, 
2013). Regional satellite-derived surface pCO2 algo-
rithms depict strong seasonal variability with lower 
pCO2 values in winter and spring and higher pCO2 

values during the summer and fall primarily driven 
by seasonal temperature dynamics. Repeated ship-
board campaigns have shown relatively low pH, 
Ωarag, and buffering capacity of waters of the north-
eastern U.S. shelves, which indicates elevated risk 
to continued acidification compared to southern 
counterparts (Figure 9.3; Wang et al., 2013). Limit-
ed MAB bottom water CO2SYS surveys have shown 
enhanced seasonal stratification relative to surface 
conditions, as respiratory DIC production, and low-
er temperature and salinity conditions brought in 
from the north as Labrador Sea slope water. The 
complexity of the surface and bottom MAB waters 

demands simultaneous observations of physical, 
biological, and chemical parameters within the re-
gion to better inform OA forecasts and projections.

Improved biogeochemical models that describe 
OA conditions and interactions with environmental 
conditions are necessary to develop decision sup-
port tools. These models should focus on creating 
accurate short- and long-term projections that aid 
efforts to better evaluate species sensitivity and po-
tential Blue Economy vulnerability. Specifically, us-
ing down-scaled Global Circulation Models (GCMs) 
to hindcast historical changes in carbonate chemis-
try would help assess the evolution of acidification 
through time beyond the limited domain of the ob-
serving system. Further refinement of down-scaled 
GCMs may then be used to project future long-term 
changes with respect to OA. Because tempera-
ture, oxygen levels, and eutrophication change on 
weekly timescales, improved models can also be 
used to generate shorter-term forecast conditions 
(1-3years) in the the MAB to provide valuable envi-
ronmental intelligence for use by local stakeholders 

Figure 9.3.  Aragonite saturation state of surface water in the MAB. Dots represent transects where data are collected. Source: http://
www.aoml.noaa.gov/ocd/ocdweb/occ_oa.html

http://www.aoml.noaa.gov/ocd/ocdweb/occ_oa.html
http://www.aoml.noaa.gov/ocd/ocdweb/occ_oa.html
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and managers. Such models must be informed and 
validated by high quality monitoring data that en-
compass direct field measurements of carbonate 
chemistry and related biogeochemical and physical 
processes. 

A buoy used to monitor the changing chemistry in the Chesa-
peake Bay. Credit: NOAA

Research Objective 9.1: Improve OA 
forecasts on daily to decadal timescales in 
context with other environmental change
The existing portfolio of OA-capable observing as-
sets in the region are sparse and/or are taking mea-
surements too infrequently to reliably describe all 
the dominant modes of variability needed to con-
strain and validate regional BGC models. Process-
es within the MAB Region (i.e., eutrophication, cold 
pools, upwelling, and estuarine biogeochemistry) 
have implications for OA that are not well under-
stood. By using modified a regional observing sys-
tem that is able to better quantify the primary driv-
ers of vertically-resolved carbonate dynamics with 
an increased emphasis at reactive interfaces (e.g., 
sediment boundary, land-ocean, etc.), OA forecasts 
for this region can be improved. Collaborations 
with hatcheries, state, and other federal agencies 
to monitor coastal conditions should be promoted 
wherever feasible to leverage observing capabilities 
and coverage.

Action 9.1.1: Carbonate chemistry measurements 
should be coupled with other environmental param-
eters (i.e., salinity, temperature, physical mixing, nu-
trient loading) and should range from surface to the 
benthos, across the shelf and into estuaries.

Action 9.1.2: Synthesize data to understand carbon-
ate chemistry dynamics of different water masses 
and temporal changes within the MAB including bio-
chemical feedbacks within the water column and 
the benthos.

Action 9.1.3: Synthesize, promote, coordinate, and 
augment sampling at riverine inputs to the estuaries 
to determine how river discharge effects alkalinity 
and OA within the MAB estuaries, coastal embay-
ment, and coastal zone.

Action 9.1.4:  Promote the use of autonomous tech-
nologies to better assess the relative contribution 
of upwelling, hypoxia, nutrient, and sediment load-
ing on OA in the region.

Research Objective 9.2: Simulate full-water 
column carbonate chemistry dynamics of 
shelf and primary estuarine systems 
The limited spatial and temporal frequency of exist-
ing water column and near-bottom biogeochemical 
measurements in the MAB make it difficult to fully 
resolve short-term variability and long-term trends 
in carbonate chemistry across the region. As most 
potentially impacted commercial species reside 
at depth or even at the benthos, it’s important that 
modeling efforts seek to fully describe the system 
in 4-D and that such models include all major driv-
ers of carbonate dynamics (e.g., OA, changes in cur-
rents, exchange with off-shelf waters, etc.). 

Action 9.2.1: Collate and synthesize existing car-
bonate chemistry data in the region that can be 
used for model validation and other studies.

Action 9.2.2: Continue development of biogeo-
chemical models to characterize OA conditions 
and evaluate our understanding of the mechanisms 
driving environmental conditions.

Action 9.2.3: Develop and/or support biogeo-
chemical Regional Ocean Models (ROMs) efforts 
informed by GCM down-scaling to hindcast (past 
decadal changes), nowcast (hourly), forecast (days 
to weeks), and project OA conditions (years to de-
cades) with concomitant changes in temperature, 
oxygen levels, and eutrophication.
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Action 9.2.4: Conduct studies to inform biogeo-
chemical models to evaluate dynamics at the sed-
iment-water interface with increased OA, eutrophi-
cation, and hypoxia.

Biological Sensitivity in the Mid-Atlantic 
Bight Region

The MAB region is a dynamic area experiencing 
changes in temperature, precipitation, and eutrophi-
cation. From 1977 to 2016, sea surface tempera-
ture increased an average of 0.057°C during the 
winter/spring and 0.047°C during fall/winter (Saba 
et al., 2016; Wallace et al., 2018). The MAB region 
also has coastal areas that are affected by eutro-
phication (Bricker et al., 2008; Ekstrom et al., 2015; 
Greene et al., 2015). The increase in temperature 
and high level of eutrophication have considerable 
implications on the regional marine ecosystem. A 
recent vulnerability analysis of 82 species from the 
Northeast Continental Shelf Region, which includes 
MAB, found 27% of taxa to be highly vulnerable to 
climate-related changes (Hare et al., 2016). Poten-
tially vulnerable species include: Atlantic surfclams 
(Spisula solidissima), Atlantic sea scallops (Placo-
pecten magellanicus), blue crab (Callinectes sapi-
dus), shortnose and Atlantic sturgeons (Acipenser 
brevirostrum, A. oxyrhynchus), and winter flounder 
(Pseudopleuronectes americanus). Importantly, the 
majority (69%) of the shellfish and finfish managed 
by the Mid-Atlantic Fisheries Management Council 
have not been investigated for OA impacts. 

OA laboratory experiments on bivalves, crustaceans, 
and finfish have demonstrated species-specific re-
sponse to OA. For bivalves, (i.e., eastern oyster and 
hard clam) reduced larval growth, calcification, and 
survivorship (Boulais et al., 2017; Gobler & Talmage, 
2014; Miller et al., 2009; Talmage & Gobler, 2009), 
and changes in physiology (i.e., respiration, feed-
ing rates, Ivanina et al., 2013; Vargas et al., 2013) 
have been observed. A few multi-stressor OA stud-
ies (i.e., combined effects of carbon dioxide (CO2) 
and hypoxia) on bivalve larvae reported decreased 
growth and survival (Clark & Gobler, 2016; Ekstrom 
et al., 2015; Gobler & Talmage, 2014), while decreas-
es in salinity and increases in temperature have also 
been linked to decrease calcification in bivalves 
(Ries et al., 2016; Speights et al., 2017). Research 

on juvenile blue crabs have found that OA affects 
survival, respiration, growth, development, and food 
consumption, and that higher temperatures amplify 
this effect (Glandon et al., 2018; Glandon & Miller, 
2016; Glaspie et al., 2017). 

A whooping crane captures a blue crab, a shellfish of econom-
ic and ecological importance in the Mid-Atlantic Bight Region. 
Credit: NOAA

Experimental studies of CO2 effects on regionally 
important finfish have examined a select group of 
shelf, nearshore, and inshore/estuarine inhabitants. 
Among these, summer flounder (Paralichthys den-
tatus) embryos had diminished survival to hatching 
and the developmental rate of larvae was accelerat-
ed by elevated CO2 (Chambers et al., 2014). Various 
forage fishes including Atlantic silverside (Menidia 
menidia), inland silverside (M. beryllina), and sheeps-
head minnow (Cyprinodon variegatus) have been 
examined for CO2 effects and these taxa exhibited 
a range of impacts. From these forage fish to eco-
nomically important ones (e.g., red drum, Sciaenops 
ocellatus), evidence is building that estuarine taxa 
are likely to be more resilient than species living in 
offshore habitats to elevated CO2 (Lonthair et al., 
2017). A handful of studies have examined fish of 
more advanced ages and results show older fish to 
be more tolerant that younger ones to elevated CO2 
(e.g., juvenile scup, Stenotomus chrysops, Perry et 
al., 2015). These experimental studies highlight the 
complex responses exhibited by marine organisms 
to CO2 under multi-stressor conditions. A summary 
of research on species found in the MAB appears 
in Saba et al. (2019). Further research on the MAB 
species should include laboratory studies of ad-
vanced experimental approaches that can examine 
the scope of response and adaptation potential, en-
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vironmental variation, population-level differences, 
and transgenerational responses that provide data 
that can be combined with habitat suitability mod-
eling.

Research Objective 9.3: Determine how 
OA and other multi-stressors impact 
ecologically and/or economically important 
marine species 
OA in combination with eutrophication, increased 
temperature, and declining oxygen concentrations 
may be altering the habitat suitability for ecological-
ly and/or economically important marine species at 
different times in their life histories. These experi-
ments should include direct and indirect (i.e., preda-
tor-prey interactions, pathogen, disease) effects as 
needed. Experiments on estuarine-dependent spe-
cies should also include temporally varying stress-
ors that mimic environmentally relevant patterns.

Action 9.3.1: Develop experiments to address pop-
ulation and life-stage responses with respect to OA 
and environmental stressors for important shellfish, 
crustaceans, and finfish in the region. 

Action 9.3.2: Characterize phenotypic plasticity and 
the genetic potential to understand selective mor-
tality emanating from OA and related stressors.

Action 9.3.3: Determine the energetic costs of accli-
mation to OA using experimental mechnistic mea-
sure, including physiology.

Action 9.3.4: Encourage field experiments that use 
existing platforms (i.e., hatcheries, restored oyster 
reefs) to monitor physiological and life-stage re-
sponses.

 Research Objective 9.4: Use experimental 
results to parameterize dynamic process 
models that allow evaluation of the within- 
and among-generation consequences 
of OA-impaired biological outcomes in 
populations
Develop more realistic, biologically informed models 
to capture population, community, and ecosystem 
responses to OA and environmental co-stressors, 

thereby enabling population projections and servic-
ing ecosystem-based management strategies.

Action 9.4.1: Link experimental and population/eco-
system modeling efforts to identify and rank highest 
value information at appropriate scales to develop, 
augment, and/or evaluate dynamic process models 
of populations and ecosystems.

Action 9.4.2: Ground truth model predictions with 
experimental testing of predictions within and be-
yond the parameterized framework of the model.

Action 9.4.3: Compare and contrast models for sen-
sitivity and robustness in applications within the 
MAB and the model utility in other regions.

Human Dimensions in the Mid-Atlantic 
Bight Region

Many coastal communities in the Mid-Atlantic Bight 
region are reliant on commercial fishing (valued 
near $800 million), and recreational fishing/tourism 
(valued $3.5 billion, NOAA Fisheries, 2017; NEFSC, 
2018). The region is particularly dependent on ben-
thic shellfish species and therefore the social vul-
nerability to OA is high.  This high vulnerability could 
be potentially exacerbated by eutrophication, which 
can amplify OA in estuaries (Ekstrom et al., 2015). 
While the wild harvest of oysters is in decline, oys-
ter aquaculture is increasing quickly throughout the 
Mid-Atlantic, especially in Virginia. Virginia ranks 
first in the U.S. for hard clam production and first on 
the East Coast of the U.S. for eastern oyster produc-
tion, with a combined value of $53.4 million in 2017 
(Hudson, 2018). Additionally, shellfish hatcheries 
throughout the MAB are increasing in both num-
bers and production capacity with concomitant in-
creases in part-time and full-time jobs (Calvo, 2018; 
Hudson, 2018). Despite the importance of OA-sus-
ceptible species to coastal communities and econ-
omies, human dimension research has lagged be-
hind research on biogeochemistry, physiology, and 
ecology.

Several areas of research are needed, including 
modeling how changes in carbonate chemistry im-
pact profitability of shellfish harvests and predicting 
economic impacts on fishery stocks and aquacul-
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ture operations. Examination of synergistic/an-
tagonistic effects of multiple stresses (Objective 
9.4.1 above) should link to economic and human 
impacts. As it is likely that OA will differentially im-
pact the various sectors of fisheries (i.e., hatcher-
ies, aquaculture, and wild fisheries), these investi-
gations should be conducted by sector. Additional 
research is needed to better understand the social 
and economic vulnerability of fishing and aquacul-
ture communities and the capacity of industries to 
develop mitigation and adaptation strategies. Tribal 
governments and indigenous communities should 
be engaged in science and monitoring, and their vul-
nerability assessed.

A paddler enjoys a sunset over the Chesapeake Bay which bene-
fits fish, crabs, oysters, and people. Credit: NOAA

Applications of any OA research findings must fit 
into existing management structures at the feder-
al, state, and tribal levels. The Mid-Atlantic Fishery 
Management Council (MAFMC) and the NOAA Na-
tional Marine Fisheries Service manage the federal 
fisheries in this region; however, some commercial-
ly important species (e.g., oysters, blue crab, and 
sea bass) are managed at the state level. Two spe-
cies (spiny dogfish and monkfish) are jointly man-
aged by both the New England Fishery Management 
Council (NEFMC) and the MAFMC. The region has 
collaborated on a regional ocean planning docu-
ment (https://www.boem.gov/Mid-Atlantic-Region-
al-Ocean-Action-Plan/) that included stakeholders 
from a variety of sectors (fishing, tourism, offshore 
wind, marine transportation, etc.). The ocean plan-
ning activities allow for better spatial management 
across sectors. Effective communication of how OA 
will affect these efforts should be incorporated.

Research Objective 9.5: Understand how OA 
will impact fish harvest, aquaculture, and 
communities
Enhanced modeling and predictive capability of OA 
impacts to shellfish and fish populations can be 
linked to economic models that project outcomes 
for fishery sectors and communities. This informa-
tion will be central to improving planning and man-
agement measures in the face of OA. 

Action 9.5.1: Expand observation capability at aqua-
culture sites by including hatcheries and shellfish 
farms as OA monitoring sites to better understand 
drivers at the local scale.

Action 9.5.2: Expand model capability to use spe-
cies-specific data to predict economic impacts. 

Action 9.5.3: Expand model capacity to include how 
changing OA conditions combined with eutrophica-
tion/ hypoxia economically affect fishery and aqua-
culture stocks and the communities that depend on 
them. 

Action 9.5.4: Estimate the threshold when changes 
in the carbonate chemistry will make harvesting or 
growing shellfish unprofitable by creating habitat 
suitability maps and documenting historical chang-
es by mapping pre-industrial distributions and fu-
ture projections (2060 and 2120).

Research Objective 9.6: Evaluate benefits 
and costs of mitigation and adaptation 
strategies
Understanding the costs and benefits of adaptation 
and mitigation strategies under different projected 
OA conditions will be vital to ensuring coastal com-
munity sustainability. Adaptation and mitigation 
practices should be tailored to the stakeholder (e.g., 
fishers, shellfishers, aquaculturists, recreational-
ists). 

Action 9.6.1: Determine costs of mitigation strat-
egies and fishers relocating to follow species dis-
placed by OA.

Action 9.6.2: Identify specific strains/breeds of spe-
cies (shellfish, in particular) that are able to respond 
better to OA conditions (e.g., genetic hardening).

https://www.boem.gov/Mid-Atlantic-Regional-Ocean-Action-Plan/
https://www.boem.gov/Mid-Atlantic-Regional-Ocean-Action-Plan/
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Action 9.6.3: Investigate alternative management 
options to ensure maximum sustainable fisheries 
yield and aquaculture production under future con-
ditions.

Research Objective 9.7: Integrate OA 
understanding into regional planning and 
management 
Rapid changes in OA conditions will require man-
agement to react quickly to changes in harvestable 
species and consider OA in future planning.  

Action 9.7.1: Conduct comprehensive management 
strategy evaluations and scenario development to 
assess the ability of fisheries management to react 
to changes in harvested populations.

Action 9.7.2: Support economic modeling and so-
ciological studies to determine the ability of fishers 
and aquaculturists to alter practices as harvested 
and/or cultured populations change.

Action 9.7.3: Develop Climate-Induced Social Vul-
nerability Indices (CSVIs) with respect to OA to im-
prove the understanding of how communities might 
respond to OA in a resilient way.

Action 9.7.4: Incorporate OA research findings into 
existing NOAA products that support management, 
such as NMFS ecosystem status reports.
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Abstract

The New England Region geographically includes 
the Gulf of Maine, Georges Bank, and Scotian Shelf. 
Ocean acidification (OA) in this region is driven 
mainly by temperature changes and regional ocean 
circulation patterns of various water masses. This 
region is experiencing temperature changes three 
times greater than the global average. This area 
is also characterized by increases in precipitation 
during winter and spring, enhancing freshwater in-
flux from riverine sources and contributing to eutro-
phication. Economically important species such as 
the Atlantic scallop and American lobster are im-
pacted by regional changes in ocean chemistry and 
pose a threat to the fishing and aquaculture indus-
tries and the economy of the region. NOAA’s New 
England research goals are to: 

•	 Improve regional biogeochemical 
characterization and understanding 
of trends and dynamics of ocean pH, 
particularly in response to temperature 
and riverine influence, to develop dynamic 
regional forecasts of OA; 

•	 Understand the response of critical marine 
species under multi-stressor (low pH, high 
temperature, low oxygen) conditions and 
assess adaptive capacity to OA to inform 
ecosystem management; and

•	 Use new knowledge to assess OA impacts 
to communities and economies to include 
OA into regional management plans and 
evaluate the costs and benefits of various 
mitigation and adaptation strategies. 

Acidification in the New England 
Region 

Presented in this chapter are the mid-term priori-
ties and objectives of NOAA’s OA research, model-
ing, and monitoring interests specific to waters in 
the Northeast United States that include the Gulf 
of Maine, Georges Bank, and western Scotian Shelf 
regions within the Northeast U.S. Continental Shelf 
Large Marine Ecosystem (LME; Figure 10.1). For in-
formation on the southern region of the Northeast 
LME, please refer to Chapter 9 Mid-Atlantic Bight Re-
gion Acidification Research Plan.

The highly productive New England Region waters 
have a long history of extensive commercial fishing 
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10. New England Region 
Acidification Research 
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Figure 10.1. The watershed for the New England Region, which includes the Gulf of Maine, Georges Bank, and Scotian Shelf. Credit: NOAA

(Colburn et al., 2016; Jepson & Colburn, 2013; 
Townsend et al., 2006) and are characterized 
by the many physical processes that influence 
biogeochemistry in the region.  The region includes 
a wide (>200 km) continental shelf, shallow tidally-
mixed banks, deep basins, submarine canyons, and 
multiple riverine systems that feed into the Gulf of 
Maine. Oceanic current systems strongly influence 
the temperature and salinity characteristics, while 
oceanographic features such as circulation patterns, 
tidal mixing, and frontal zones affect every aspect 
of the ecology of the system. The hydrological 
characteristics of the New England Region strongly 
influence the OA signal, however thermodynamic 
heating, salinity anomalies, increased acidic river 
discharge, and coastal eutrophication can have both 
synergistic and antagonistic effects on OA in the 
region (Salisbury et al., 2008; Salisbury & Jönsson, 
2018; Wang et al., 2017; Wanninkhof et al., 2015).

Understanding how physical drivers influence OA 
in the surface and bottom waters is critical due to 
the commercial and recreational use of the water 
column and benthos. The New England Region has 
low in situ pH, aragonite saturation state (Ωarag), and 
buffering capacity attributed to inputs of fresh and 
lower alkaline waters and the accumulation of respi-
ratory products from high primary productivity (Fig-
ure 10.2; Wang et al., 2017). However, in some por-

tions of the region, processes such as net warming, 
variable salinity, and introduction of less buffered 
freshwater (i.e., river discharge) can make it difficult 
to detect long-term rates of change for OA (Fay et 
al., 2017; Salisbury et al., 2008; Salisbury & Jönsson, 
2018; Tjiputra et al., 2014). On decadal timescales, 
the change in pH is dominated by carbon dioxide 
(CO2) from the atmosphere, however, the Ωarag signal 
is a combination of changes in total alkalinity (TA), 
sea surface temperature (SST), and salinity (Salis-
bury & Jönsson, 2018). With higher precipitation 
predicted in the future (Guilbert et al., 2015; Rawlins 
et al., 2012; Sinha et al., 2017), increased inputs of 
fresh water to the coastal zone may increase eutro-
phication, decrease TA, and consequently influence 
pH and Ωarag. Changes in the climate, hydrology, and 
biogeochemistry all impact the OA signal, thus it is 
critical to characterize the respective drivers of OA 
and the ranges of chemical conditions within the 
system to determine species and ecosystem risk.

Fisheries landings in the New England Region to-
taled $1.2 billion in 2015 with Atlantic sea scallops 
and American lobsters accounting for 73% of the to-
tal landings making the fishing and marine aquacul-
ture industry particularly vulnerable to changes in 
OA and Ωarag (Lapointe, 2013). Shellfish habitats are 
predominantly in the coastal zones, which intersect 
with some of the 2019 fishing grounds for Atlantic 
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sea scallops (Figure 10.3). Marine aquaculture is 
expanding in every state of the region and the devel-
opment of offshore shellfish aquaculture through-
out the coastal zone, highlights the importance of 
characterizing OA drivers in nearshore and benthic 
environments, where acidification can be dominat-
ed by changes in local biogeochemical processes, 
and/or freshwater supply.  Similarly, eutrophication 
and increases in heavy precipitation events due to 
climate change may contribute to increases in OA in 
coastal waters (Ge et al., 2017; Gobler & Baumann, 
2016; Sinha et al., 2017) and affect the growth, sur-
vival, and calcification of several larval shellfish 
species (Clements & Hunt, 2014; Gobler & Talmage, 
2014; Green et al., 2013; Salisbury et al., 2008). 
Consequently, many coastal communities have a 
medium-high to high vulnerability risk to OA with 
anticipated effects by 2031 (Ekstrom et al., 2015). 
Mitigation strategies, such as amending the seawa-
ter intake at mariculture facilities to compensate 
for low Ωarag conditions and nutrient reduction, may 
need to be implemented in some communities. Dy-
namic biogeochemical environments in the region 

highlights critical gaps in understanding of how OA 
will progress and affect marine organisms and the 
fishing and aquaculture industries in the region. 

Environmental Change in the New 
England Region

Understanding how OA is changing within the north-
ernmost subareas (Gulf of Maine, Georges Bank) of 
the Northeast Large Marine Ecosystem (Sherman 
et al., 1996) demands a clear understanding of the 
physical and biogeochemical processes governing 
the disparate environments from Georges Bank, to 
deep Gulf of Maine basins, to coastal and estuarine 
systems. Scientists, the fishing industry, aquacul-
ture industry, and policymakers need improved un-
derstanding of how OA conditions are changing con-
temporaneously with other factors including rapid 
warming, circulation changes, changes in seasonal 
precipitation, and shifts in the timing of the spring-
time freshet. These complexities necessitate that 
studies of OA impacts on marine species include 
synergistic or antagonistic effects with changes in 

Figure 10.2. Aragonite saturation levels in 2017 for the northeast United States in January. The NE region has the lowest Ωarag on the 
East Coast with levels below 2.0. Image courtesy of Ruben van Hooidonk NOAA/AOML/CIMAS.  The levels for the month of January is 
shown, with other months being represented on this web page: https://www.coral.noaa.gov/accrete/east-coast-oaps.html.

https://www.coral.noaa.gov/accrete/east-coast-oaps.html
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non-OA parameters such as temperature. From an 
observing and modeling perspective this demands 
simultaneously targeting a comprehensive suite of 
physical, biological, and chemical parameters.  

An ocean mooring in the Gulf of Maine used to monitor ocean 
conditions. Credit: Personnel of NOAA Ship DELAWARE II

Some of the most sensitive species in this region 
experience a range of different environments across 
their life-cycles including pelagic, benthic, estuarine, 
and oceanic. Only a subset of these environments 
have been suitably characterized with respect to 
OA. The current observing system in the region is 
comprised largely of surface observing measure-
ments with some notable exceptions including the 
East Coast OA (ECOA, high spatial fidelity at qua-
drennial frequency) and quarterly NEFSC Ecosys-
tem Monitoring (EcoMon, lower spatial fidelity at 
quarterly frequency). Improved subsurface monitor-
ing in both time and space will require modifying the 
existing regional monitoring strategy including de-
ployment of proven autonomous profiling technol-
ogies suited to measuring the entire water column 
inclusive of benthic environments.

Research Objective 10.1: Improve 
biogeochemical characterization of marine 
habitats most relevant to economically and/
or ecologically important species 
Target species will be inclusive of both pelagic and 
benthic species and will include observations of full 
life cycles. Leveraging existing datasets and sup-
plementing the current Northeast observing system 
with additional subsurface capabilities through var-
ious activities will be critical to characterizing the 
less understood benthic and near-bottom environ-
ments.

Action 10.1.1: Support the development of new au-
tonomous technologies suited for full carbonate 
chemistry water column profiling and benthic envi-
ronment observing.

Action 10.1.2: Conduct data mining of existing 
benthic carbonate chemistry data, implementing 
long-term benthic monitoring at targeted locations, 
synthesizing exercises, and improving geochemical 
models to better capture the processes governing 
benthic environment.

Action 10.1.3: Conduct analyses to identify data 
gaps in parameters needed to characterize acidifi-
cation dynamics within the region (past and present 
conditions).

Action 10.1.4: Establish long-term carbonate chem-
istry benthic monitoring at targeted locations to 
characterize interactions at the sediment water in-
terface and relationships to surface productivity.

Action 10.1.5: Augment existing observing system 
to achieve improved spatiotemporal coverage of 
key processes and better characterize the full water 
column inclusive of the benthos.

Action 10.1.6: Improve and operationalize regional 
and subregional 4D biogeochemical modeling ca-
pabilities with enhanced data assimilation that cap-
tures land-sea, benthic, and physical processes.

Research Objective 10.2: Better understand 
the trends, dynamics, and changes in 
Scotian Shelf, Gulf Stream, and major 
riverine source waters and their influence on 
OA 
Processes including advection, nutrient loading, 
and riverine discharge have implications for OA in 
the New England Region carbonate chemistry con-
ditions that are currently not well characterized. Re-
cent changes in the relative supply of Gulf Stream 
waters have resulted in dramatic increases in the 
Gulf of Maine water temperature elevating satura-
tion states and altering the DIC supply to the system 
thereby altering its buffer capacity. Climate induced 
changes to the precipitation dynamics in the north-
east have increased the frequency of high-intensi-
ty precipitation events and, together with warming, 



have altered the timing of the spring freshet, each 
of which alters the timing and extent of corrosive 
river plumes extending out from river mouths into 
the Gulf.

Action 10.2.1: Integrate OA observations in the Gulf 
of Maine with observations of riverine and offshore 
source waters and conduct a data synthesis of 
measurements collected by other federal and state 
agencies, as well as academic and NGO research 
facilities, including building on the data synthesis 
underway and housed by Northeast Regional Aso-
ciation of Coastal Ocean Observing Systems (NER-
ACOOS).

Action 10.2.2: Better understand how carbonate 
chemistry in the region is affected by changes in 
both riverine and offshore source water fluxes and 
the chemistry of those source waters.

Action 10.2.3: Based on these exercises and anal-
yses, identify new areas that are important for in-
creased monitoring.

Research Objective 10.3: Produce forecasts 
of changes in OA conditions in dynamic 
environments on daily, monthly, seasonal, 
and yearly time periods
As identified through numerous regional stakehold-
er and industry engagement forums including those 
initiated via the Northeast Coastal Acidification Net-
work, there remains a need for predictive capability 
at timescales not currently well addressed with ex-
isting models. These include forecasts of OA condi-
tions for the region that align with the time frames 
of industry, management and business planning 
and decision making.  

 Action 10.3.1: Improve and operationalize region-
al biogeochemical models informed and validated 
by environmental monitoring data that reliably ac-
count for co-occurring changes including projected 
temperature changes, precipitation and nutrient dy-
namics to more accurately predict variability in the 
coastal waters.
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Figure 10.3. Atlantic sea scallop managed waters for fishing year 2019 (April 1–March 30). Source: https://www.fisheries.noaa.gov/
resource/map/atlantic-sea-scallop-managed-waters-fishing-year-2019

https://www.fisheries.noaa.gov/resource/map/atlantic-sea-scallop-managed-waters-fishing-year-2019 
https://www.fisheries.noaa.gov/resource/map/atlantic-sea-scallop-managed-waters-fishing-year-2019 
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Action 10.3.2: Configure model results to be fit-
for-purpose and interpretable by decision makers 
to better provide needed guidance for regional 
planning.

Biological Sensitivity in the New 
England Region

The New England Region is a dynamic area that is 
experiencing changes in temperature, phenology, 
precipitation, and eutrophication with an average 
increase in sea surface temperature of 0.033° C per 
year from 1982-2016, which is three times greater 
than the global average (Hare et al., 2016; Pershing 
et al., 2015). This rapid rate of increase has consid-
erable implications on regional marine ecosystems. 
A recent sensitivity analysis predicts that 27% of 
82 species within the region will be susceptible to 
changes in the biogeochemical environment (Hare 
et al., 2016). For a majority of bivalve larval experi-
ments decreased growth, survival, and rate of calci-
fication, and/or dissolution of shells was observed 
(Clements & Hunt, 2014; Fabry et al., 2008; Gobler 
& Talmage, 2014; Green et al., 2013), with a po-
tential minimum Ωarag threshold (> 1.6) needed for 
survivability and settlement (Salisbury et al., 2008; 
Salisbury & Jönsson, 2018). Low levels of Ωarag near 
this threshold can already be found seasonally in 
the region (Figure 10.2). A few field studies found 
that fewer bivalves settled under OA conditions 
assoicated with low pH in sediments (Clements & 
Hunt, 2018; Meseck et al., 2018). To date, models 
have been used to determine OA effects on Atlan-
tic sea scallops (Placopecten magellanicus) and no 
data exist on Atlantic surf clams (Spisula solidissi-
ma). Integrated assessment models for the Atlantic 
sea scallops, found that under high OA the there is 
a potential to reduce the sea scallop biomass by 
approximately 13% by the end of the century (Cool-
ey et al., 2015; Rheuban et al., 2018). Results from 
experiments on the commercially important crusta-
cean American lobster (Homarus americanus) has 
produced conflicting results to elevated CO2 (Kep-
pel et al., 2012; Ries et al., 2009). Regarding finfish, 
several studies have focused on commercially and 
ecologically important fish of the region. In summer 
flounder (Paralichthys dentatus), survival of embry-
os to hatching was diminished under experimental-

ly elevated CO2 conditions (Chambers et al., 2014). 
A series of experimental studies on the forage fish 
Atlantic silverside (Menidia menidia) and inland 
silverside (M. beryllina) have highlighted the com-
plexity of effects when CO2 is acting alone versus in 
combination with other stressors (Baumann, 2019; 
Baumann et al., 2012). A summary of research of 
other organisms' responses can be found in Gledhill 
et al. (2015), but to date most of the research fo-
cuses on larval stages; understanding OA effects at 
multiple life stages is missing. Further research on 
New England species should include other life stag-
es (or the entire life cycle where feasible), multigen-
erational effects, multiple populations, and changes 
in other physical parameters that are anticipated in 
future oceans (i.e., dissolved oxygen, salinity, and 
temperature). This broader perspective will provide 
a mechanistic understanding of the type and intri-
cacies of the biological responses to OA.  This re-
search should also be tied to model development so 
the results can be used in single-species and eco-
system models to hindcast, nowcast, and forecast 
the effects of OA on biological systems. Research 
should incorporate a range of OA levels that consid-
er both near-term and long-term time horizons, and 
include relevant environmental co-stressors.

Worth more than $500 million per year, sea scallops are the 
second most valuable fishery in the Northeast US. Credit: Mark 
Dixon/NOAA

Fundamental to our understanding of the conse-
quences of the biological effects of OA is an esti-
mation of an organism’s resilience and adaptive 
potential. The resiliency of an organism is reflected 
in its acclimation plasticity, whereas the adaptive 
potential requires an understanding of the genetic 
and heritable bases to transgenerational change. 
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Future studies that consider the focal organism in 
an ecological context, where both prey and preda-
tors impacts are identified, will be fundamental to 
this broader understanding of OA impacts in nature. 
Providing such data will be useful in management 
efforts as scientists consider species-to-ecosystem 
sensitivity to OA in the region.  

A major consideration is the combined effects of 
OA and warming trends on food webs in the region, 
including changes in predator-prey relationships, 
and the broad changes in species’ ranges in the 
region. The NEFSC Atlantis model looked at direct 
and indirect effects of species response to OA and 
found that food web consequences of OA may ex-
tend beyond groups that are most vulnerable and 
to fishery yield and ecosystem structure (Fay et al., 
2017). In particular, it is critical to understand how 
rapid warming in the New England Region interacts 
with the carbonate system to influence Ωarag and 
potential OA impacts. Experiments on multiple en-
vironmental stressors, and the adaptive capacity of 
the organism, will provide critical process data for 
models and broad population metrics for key spe-
cies as identified in the NOAA 2010 Acidification Re-
search Plan for the Northeast and the Northeast Cli-
mate Vulnerability Assessment (Hare et al., 2016).

Research Objective 10.4: Identify critical 
(sensitive, predictive, and consequential) 
responses of selected keystone species to 
OA and multi-stressor conditions
OA progression will happen in concert with other en-
vironmental changes including warming ocean tem-
perature, declining oxygen concentration, and nutri-
ent loading. In order to fully appreciate the impact to 
marine organisms, a multi-stressor framework that 
evaluates multiple life stages is needed. 

Action 10.4.1: Develop laboratory and field capabil-
ity to expand existing single and multi-stressor OA 
experiments for all life-stages of shellfish and fin-
fish of aquaculture, wild fisheries, and ecosystem 
importance.

Action 10.4.2: Use these expanded frameworks to 
evaluate the response of key bivalves, finfish and 
forage species in the region for the coming decades.

Research Objective 10.5: Characterize the 
adaptive capacity of species to OA and 
investigate potential mitigation patterns
Field and laboratory experiments focusing on spe-
cies-specific response curves to future warming 
and acidification are central to predicting ecosys-
tem response in the changing environment. Such 
predictions are necessary for developing viable 
management strategies under changing ocean con-
ditions.

Action 10.5.1: Conduct experiments on potential 
for organismal acclimation and transgenerational 
adaptation to future environments.

Action 10.5.2: Conduct experiments to determine if 
there are different genetic lines within and across 
populations that respond differently to OA.

Action 10.5.3: Identify potential mitigation practices 
that could offset local acidification (i.e., kelp grown 
around aquaculture beds).

Research Objective 10.6: Incorporate OA 
and other marine stressors into single 
species and ecosystem models to improve 
ecosystem management
Incorporating knowledge from multi-stressor and 
adaptive capacity research into existing regional 
ecosystem models will improve predictions of eco-
system responses for the region.

Action 10.6.1: Encourage modelers and experimen-
talists to work together to identify key processes, 
the type and level of detail needed for incorporating 
biological processes into single-species models, 
and the interpretation of model output under vari-
ous OA and climate scenarios.

Action 10.6.2: Develop unified and realistic ecosys-
tem-level models that accurately capture essential 
biological and biogeochemical details as a joint 
effort among modelers, field scientists, and exper-
imentalists.

Action 10.6.3: Identify future locations and times 
where successful recruitment of our Living Marine 
Resources (LMRs) may no longer be feasible.
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Human Dimensions in the New England 
Region

The New England Region supports over 6 million 
workers, with a total annual payroll of $339 billion, 
and a regional gross domestic production of $885 
billion (NOAA, 2017). New Bedford, MA, is the larg-
est commercial fisheries port in the U.S. in terms of 
revenue with the American sea scallop fishery gen-
erating over $379 million (NOAA Fisheries, 2019b). 
In addition to these jobs, aquaculture in the region 
is growing at a fast rate (Lapointe, 2013). A Fisher-
ies Climate Vulnerability assessment coupled to a 
Social Climate vulnerability assessment found that 
communities dependent on shellfish fisheries were 
highly vulnerable to OA (Colburn et al., 2016; Hare 
et al., 2016). A sensitivity analysis of overall social 
vulnerability to OA found that the region was medi-
um-highly to highly vulnerable to OA, especially in 
Massachusetts (Ekstrom et al., 2015). The analysis 
further found that in the New England Region, local-
ly high levels of eutrophication may be enhancing 
OA. The interdependency between human commu-
nities and marine resources determines both public 
interest in the OA issue and how NOAA responds 
to its mandates. NOAA needs to understand current 
and future consequences of OA to economic and 
social well-being. Threats that are posed to region-
al stakeholders as a result of OA include impacts 
to economically important species, especially scal-
lops, mussels, clams, oysters, and lobster. Howev-
er, how these biological impacts could translate to 
economic and social impacts is relatively unknown. 
Potential strategies that may be utilized by commu-
nities to help mitigate the influence of OA may in-
clude site selection, mitigation, selective breeding, 
and multi-trophic aquaculture (Clements & Chopin, 
2017).

Research indicates that OA has the potential to 
negatively impact shellfish survival and growth as 
well as fish physiology, behavior, and recruitment. 
These potential changes in the availability of mar-
ketable stocks can lead to economic tipping points. 
As forecasting and modeling of the region improves 
(Objective 10.2.3 and Objective 10.3.2), the New En-
gland Region needs to better understand how OA 
will change the abundance, harvestability, and eco-

nomics of commercial fish stocks. Several areas of 
investigation are needed, including modeling to es-
timate when changes in carbonate chemistry could 
make harvesting or growing shellfish less profit-
able, and models that use species-specific data to 
predict ecological impacts on fishery stocks , and 
subsequent economic impacts to fisheries and fish-
ing communities. Additional research on economic 
tipping points is needed to better understand the 
vulnerability of fishing communities and how the 
industry can adapt. For example, small-scale fisher-
men may not be equipped to adapt to fishing further 
offshore if a species’ habitat changes. Information 
on potential impacts of OA on fisheries and aqua-
culture could help communities and industry de-
crease their vulnerability to impacts and increase 
their resilience to changing ocean conditions. Spe-
cial attention needs to be paid to tribal governments 
and indigenous communities that conduct aquacul-
ture operations that may be particularly vulnerable 
to coastal changes, including OA.

An oyster aquaculture worker in Maine packing oysters to sell. 
Credit: Christopher Katalinas/NOAA

The New England Region has robust existing efforts 
in ocean planning and regional fisheries manage-
ment. The understanding and projections achieved 
with the research objectives described in this sec-
tion should be incorporated into existing efforts to 
enable better planning and management. The region 
has embarked on a comprehensive effort to develop 
maps and provide a foundation for ocean planning 
(https://neoceanplanning.org/plan/). Habitat suit-
ability maps (produced above) must be compared 
and integrated with these ocean plans. Efforts such 
as wind farm siting are becoming important drivers 

https://neoceanplanning.org/plan/
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of economic activity in the coastal ocean, and these 
plans should include our understanding of how im-
pacted resources will respond to OA in combination 
with these other activities.  

Research Objective 10.7: Understand how 
OA will impact fish harvest, aquaculture and 
communities
Enhanced modeling and predictive capability of OA 
impacts to shellfish and fish populations developed 
by Action 10.3.3 can be linked to economic models 
that project outcomes for fishery sectors and com-
munities. This information will be central to improv-
ing planning and management measures in the face 
of progressing OA. 

Action 10.7.1: Estimate the time threshold by when 
changes in the carbonate chemistry will make har-
vesting or growing shellfish unprofitable.

Action 10.7.2: Expand model capability to use spe-
cies-specific data to predict economic impacts on 
individual fishery and aquaculture stocks.

Action 10.7.3: Support research on economic tip-
ping points needed to better understand the vulner-
ability of fishing and aquaculture communities and 
how the industry can adapt.

Research Objective 10.8: Evaluate benefits 
and costs of mitigation and adaptation 
strategies
Understanding the costs and benefits of adaptation 
and mitigation strategies under different projected 
OA conditions will be vital to ensuring coastal com-
munity sustainability.

Action 10.8.1: Conduct modeling to determine the 
costs of altering the timing and location of fishing 
activities and mitigation strategies (i.e., seagrass, 
kelp, chemical alkalinity addition).

Action 10.8.2: Evaluate how the removal of excess 
nutrients aimed at reducing nearshore eutrophica-
tion will influence estuarine carbonate chemistry 
and acidification.

Research Objective 10.9: Integrate OA 
understanding into regional planning and 
management 
Rapid changes in OA conditions will require man-
agement to react quickly to changes in harvestable 
species. 

Action 10.9.1: Conduct comprehensive manage-
ment strategy evaluations and scenario develop-
ment to assess the ability of fisheries management 
to react to changes in harvested populations .

Action 10.9.2: Support economic modeling and so-
ciological studies to determine the ability of fishers 
to alter fishery practices as harvested populations 
change (Objective 10.6).

Action 10.9.3: Develop Climate-Induced Social Vul-
nerability Indices (CSVIs) with respect to OA to im-
prove the understanding of how communities might 
respond to OA in a resilient way.
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