Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Implications of salinity normalization of seawater total alkalinity in coral reef metabolism studies

Citation: Courtney TA, Cyronak T, Griffin AJ, Andersson AJ (2021) Implications of salinity normalization of seawater total alkalinity in coral reef metabolism studies. PLoS ONE 16(12): e0261210.

Salinity normalization of total alkalinity (TA) and dissolved inorganic carbon (DIC) data is commonly used to account for conservative mixing processes when inferring net metabolic modification of seawater by coral reefs. Salinity (S), TA, and DIC can be accurately and precisely measured, but salinity normalization of TA (nTA) and DIC (nDIC) can generate considerable and unrecognized uncertainties in coral reef metabolic rate estimates. While salinity normalization errors apply to nTA, nDIC, and other ions of interest in coral reefs, here, we focus on nTA due to its application as a proxy for net coral reef calcification and the importance for reefs to maintain calcium carbonate production under environmental change. We used global datasets of coral reef TA, S, and modeled groundwater discharge to assess the effect of different volumetric ratios of multiple freshwater TA inputs (i.e., groundwater, river, surface runoff, and precipitation) on nTA. Coral reef freshwater endmember TA ranged from -2 up to 3032 μmol/kg in hypothetical reef locations with freshwater inputs dominated by riverine, surface runoff, or precipitation mixing with groundwater. The upper bound of freshwater TA in these scenarios can result in an uncertainty in reef TA of up to 90 μmol/kg per unit S normalization if the freshwater endmember is erroneously assumed to have 0 μmol/kg alkalinity. The uncertainty associated with S normalization can, under some circumstances, even shift the interpretation of whether reefs are net calcifying to net dissolving, or vice versa. Moreover, the choice of reference salinity for normalization implicitly makes assumptions about whether biogeochemical processes occur before or after mixing between different water masses, which can add uncertainties of ±1.4% nTA per unit S normalization. Additional considerations in identifying potential freshwater sources of TA and their relative volumetric impact on seawater are required to reduce uncertainties associated with S normalization of coral reef carbonate chemistry data in some environments. However, at a minimum, researchers should minimize the range of salinities over which the normalization is applied, precisely measure salinity, and normalize TA values to a carefully selected reference salinity that takes local factors into account.

Scroll to Top


The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:


Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare


Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes


Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally


On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide


You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action