Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Multiple Linear Regression Models for Reconstructing and Exploring Processes Controlling the Carbonate System of the Northeast US From Basic Hydrographic Data

Citation: McGarry, K., Siedlecki, S. A., Salisbury, J., & Alin, S. R. (2021). Multiple linear regression models for reconstructing and exploring processes controlling the carbonate system of the northeast US from basic hydrographic data. Journal of Geophysical Research: Oceans, 126, e2020JC016480. https://doi.org/10.1029/2020JC016480

In the coastal ocean, local carbonate system variability is determined by the interaction between ocean acidification and local processes. Sporadic observations indicate that biological metabolism, river input, and water mass mixing are dominant local processes driving carbonate system variability in northeast US shelf waters. These processes are also reflected in the variability of observed temperature (T), salinity (S), oxygen concentration (O2), and nitrate concentration (NO3). Therefore, regionally specific empirical models can be developed, which relate carbonate system parameters to a combination of basic hydrographic parameters. Here, we develop multiple linear regression models that represent the processes that drive carbonate system variability in the Mid-Atlantic Bight and Gulf of Maine using observations obtained on three hydrographic surveys in summers between 2007 and 2015. The empirical model equations reveal the observation-based relationships between carbonate parameters and basic hydrographic variables. Unlike other regions where empirical models have been developed, salinity appears in all models. T is the most important parameter for predicting aragonite saturation state (ΩAR), while S and O2 are most important for predicting pH on total scale (pHT). The basic hydrographic variables explain over 98% of the variability in total alkalinity (TA), dissolved inorganic carbon (DIC), and ΩAR and 89% of the variability in pHT in the calibration data. We recommend applying models that depend on T, S, O2, and NO3 as predictors, which reproduce TA and DIC with R2 > 0.97, ΩAR with R2 > 0.93, and pHT with R2 > 0.77, to reconstruct carbonate system parameters in the region.

Partially supported by NOAA OAP Grant#NA19OAR0170351

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action