Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

New and updated global empirical seawater property estimation routines

Citation: Carter, B.R., H.C. Bittig, A.J. Fassbender, J.D. Sharp, Y. Takeshita, Y.-Y. XU, M. Álvarez, R. Wanninkhof, R.A. Feely, and Barbero, L. New and updated global empirical seawater property estimation routines. Limnology and Oceanography: Methods, 2021 ( (2021).

We introduce three new Empirical Seawater Property Estimation Routines (ESPERs) capable of predicting seawater phosphate, nitrate, silicate, oxygen, total titration seawater alkalinity, total hydrogen scale pH (pHT), and total dissolved inorganic carbon (DIC) from up to 16 combinations of seawater property measurements. The routines generate estimates from neural networks (ESPER_NN), locally interpolated regressions (ESPER_LIR), or both (ESPER_Mixed). They require a salinity value and coordinate information, and benefit from additional seawater measurements if available. These routines are intended for seawater property measurement quality control and quality assessment, generating estimates for calculations that require approximate values, original science, and producing biogeochemical property context from a data set. Relative to earlier LIR routines, the updates expand their functionality, including new estimated properties and combinations of predictors, a larger training data product including new cruises from the 2020 Global Data Analysis Project data product release, and the implementation of a first-principles approach for quantifying the impacts of anthropogenic carbon on DIC and pHT. We show that the new routines perform at least as well as existing routines, and, in some cases, outperform existing approaches, even when limited to the same training data. Given that additional training data has been incorporated into these updated routines, these updates should be considered an improvement over earlier versions. The routines are intended for all ocean depths for the interval from 1980 to ~2030 c.e., and we caution against using the routines to directly quantify surface ocean seasonality or make more distant predictions of DIC or pHT.

Regional data contributions and validation efforts originate from NOAA National Oceanographic Partnership Program (NOPP) funding (NA19OAR4310362), NOAA Ocean Acidification Program, and GOMO support for biogeochemical Argo. This research was carried out in part under the auspices of the Cooperative Institutes for Climate, Ocean, and Ecosystem Studies (CICOES) and Marine and Atmospheric Studies (CIMAS), Cooperative Institutes between Universities of Washington and Miami (respectively) and the National Oceanic and Atmospheric Administration, cooperative agreement numbers NA15OAR4320063 and NA20OAR4320472, respectively.

Scroll to Top


The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:


Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare


Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes


Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally


On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide


You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action