Time series of OA and carbon system properties in the northern Gulf

This project will provide time-series observations of coastal ocean pH and carbon system properties, along with other variables that affect carbon transformations, in the northern Gulf of Mexico in support of goals elucidated in the NOAA Ocean and Great Lakes Acidification Research Implementation Plan. This project most directly addresses Theme 1: Develop the monitoring capacity to quantify and track ocean acidification in open-ocean, coastal, and Great Lake systems, but also addresses the educational objectives of Theme 6. USM will maintain a 3- m discus buoy in the northern Gulf of Mexico with a PMEL MAPCO2 system that includes a CTD, dissolved oxygen, and pH sensors. Meteorological sensors on the buoy will be utilized for computing air-sea fluxes of CO2. Water samples and continuous vertical profiles will be taken at the buoy site during quarterly cruises. Water samples will be analyzed for DIC, TA, pH, dO, S, NUTS and chlorophyll a. Analyzed water samples and profile data will be submitted to NODC through standard NOAA OAP submission spreadsheets containing both data and associated metadata.
While this work is focused on the Gulf of Mexico additional time-series sites in the South Atlantic Bight and Gulf of Maine can provide a comparison over a wide range of coastal and latitudinal regimes. The northern Gulf of Mexico, Florida and South Atlantic Bight regions are all commonly influenced by one contiguous western boundary current system, which originates with the Loop Current in the Gulf of Mexico and then becomes the Gulf Stream along the southeastern U.S. continental shelf. The Gulf of Mexico observations will be compared with the other western boundary current influenced site in the South Atlantic Bight maintained by the University of Georgia (UGA) and the high latitude site in the Gulf of Maine maintained by the University of New Hampshire (UNH). 

Time series of OA and carbon system properties in the northern Gulf Read More »