Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Richard A. Feely

Climatological distribution of ocean acidification variables along the North American ocean margins

Climatologies, which depict mean fields of oceanographic variables on a regular geographic grid, and atlases, which provide graphical depictions of specific areas, play pivotal roles in comprehending the societal vulnerabilities linked to ocean acidification (OA). This significance is particularly pronounced in coastal regions where most economic activities, such as commercial and recreational fisheries and aquaculture […]

Climatological distribution of ocean acidification variables along the North American ocean margins Read More »

Advancing best practices for assessing trends of ocean acidification time series

Assessing the status of ocean acidification across ocean and coastal waters requires standardized procedures at all levels of data collection, dissemination, and analysis. Standardized procedures for assuring quality and accessibility of ocean carbonate chemistry data are largely established, but a common set of best practices for ocean acidification trend analysis is needed to enable global

Advancing best practices for assessing trends of ocean acidification time series Read More »

Strategy for NOAA Carbon Dioxide Removal (CDR) Research: A White Paper documenting a potential NOAA CDR Science Strategy as an element of NOAA’s Climate Interventions Portfolio

This document is intended to serve as a reference for exploration of carbon removal research at NOAA. The report was drafted by authors from across NOAA to provide strategic direction to relevant labs and programs in multiple line offices. The goal has been to assemble as much information as possible in order to facilitate conversations

Strategy for NOAA Carbon Dioxide Removal (CDR) Research: A White Paper documenting a potential NOAA CDR Science Strategy as an element of NOAA’s Climate Interventions Portfolio Read More »

Natural Analogues in pH Variability and Predictability across the Coastal Pacific Estuaries: Extrapolation of the Increased Oyster Dissolution under Increased pH Amplitude and Low Predictability Related to Ocean Acidification

Coastal-estuarine habitats are rapidly changing due to global climate change, with impacts influenced by the variability of carbonate chemistry conditions. However, our understanding of the responses of ecologically and economically important calcifiers to pH variability and temporal variation is limited, particularly with respect to shell-building processes. We investigated the mechanisms driving biomineralogical and physiological responses

Natural Analogues in pH Variability and Predictability across the Coastal Pacific Estuaries: Extrapolation of the Increased Oyster Dissolution under Increased pH Amplitude and Low Predictability Related to Ocean Acidification Read More »

Ocean acidification status in Pacific Ocean surface seawater in 2020. State of the Climate in 2020, Global Oceans

While the Pacific Ocean north of ~20°S has the lowest column inventory of anthropogenic carbon dioxide (CO2) outside of the Southern Ocean (Gruber et al. 2019), background dissolved inorganic carbon content is high as a result of respiration that occurs in the ocean’s interior and old “ages” of deep Pacific waters. Consequently, the northern Pacific

Ocean acidification status in Pacific Ocean surface seawater in 2020. State of the Climate in 2020, Global Oceans Read More »

The Combined Effects of Ocean Acidification and Respiration on Habitat Suitability for Marine Calcifiers Along the West Coast of North America

The combined effect of ocean acidification and respiration in the California Current Ecosystem is to reduce water column pH and aragonite saturation state, resulting in a compression of the overall size of suitable habitat for marine calcifiers. The addition of excess anthropogenic CO2 also makes it more likely that critical biological thresholds are crossed and shell

The Combined Effects of Ocean Acidification and Respiration on Habitat Suitability for Marine Calcifiers Along the West Coast of North America Read More »

Evaluating environmental controls on the exoskeleton density of larval Dungeness crab <em>via</em> micro computed tomography

Dungeness crab (Metacarcinus magister) have significant socioeconomic value, but are threatened by ocean acidification (OA) and other environmental stressors that are driven by climate change. Despite evidence that adult harvests are sensitive to the abundance of larval populations, relatively little is known about how Dungeness megalopae will respond to these stressors. Here we evaluate the

Evaluating environmental controls on the exoskeleton density of larval Dungeness crab <em>via</em> micro computed tomography Read More »

Pelagic calcifiers face increased mortality and habitat loss with warming and ocean acidification

Global change is impacting the oceans in an unprecedented way, and multiple lines of evidence suggest that species distributions are changing in space and time. There is increasing evidence that multiple environmental stressors act together to constrain species habitat more than expected from warming alone. Here, we conducted a comprehensive study of how temperature and

Pelagic calcifiers face increased mortality and habitat loss with warming and ocean acidification Read More »

Global Synthesis of the Status and Trends of Ocean Acidification Impacts on Shelled Pteropods

The accumulation of anthropogenic CO2 in the ocean has major ecological, socioeconomic, and biogeochemical impacts, with repercussions for the ocean as a critical carbon sink. Ocean acidification (OA) disproportionately affects marine calcifiers, among which pelagic zooplanktonic pteropods play a significant role in carbonate export. The pteropod, due to the susceptibility of its aragonite shell to rapid

Global Synthesis of the Status and Trends of Ocean Acidification Impacts on Shelled Pteropods Read More »

Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action