East coast ocean acidification  3 cruise

Image Alt TextNOAA Ship Ronald H. Brown
U.S. East Coast

ECOA-3 Is an Anchor for Ocean Acidification Research In the Region

ECOA3_samplingMap

ECOA-3 is the third iteration of the East Coast Ocean Acidification Cruise and marks 15 years since the first NOAA coastwide sampling of the region. The cruise provides high quality data for monitoring the carbon system along the U.S. East Coast and will cover fishing grounds for the nation's most valuable fisheries. This iteration not only monitors ocean chemistry, but also links marine biological and chemical processes, and improves our ability to model and forecast ocean change. The information gleaned by cruises like ECOA-3 help us track long-term ocean change and evaluate data from our monitoring network of buoys, gliders, and other tools. The cruise is led by scientists at the University of New Hampshire and joined through transdisciplinary partnerships with others from the University of Delaware, University of Connecticut, University of Miami, North Carolina State University, Lamont-Doherty Earth Observatory, NOAA and others that continue their work shoreside. Learn more about their research below.





ECOA-3: Regional sampling of the east coast

Where Does ECOA-3 Go?

ECOA-3 starts in Newport, RI, travels to Portland, ME and then continues onto Nova Scotia. Major highlights:

Gulf of Maine
The Gulf of Maine is strongly influenced by the Labrador Current, which carries poorly buffered, cold water into the Gulf. Large rivers bring low alkalinity, high nutrient runoff into the Gulf. Regional warming could slow down anthropogenic CO2 acidification, but current modeling projections suggest that ocean acidification will overwhelm warming by 2050. Fisheries that are both economically and culturally important for the region include lobsters and scallops as well as oyster and mussel aquaculture that occurs in estuaries.

Georges Bank
Productivity in this region Georges Bank matches nearshore coastal areas, which is unique for an offshore area. The cold, nutrient-rich Labrador current washes over this shoal that is larger than the size of Massachusetts. The intersection of this current with the highly buffered Gulf Stream, tidal action promoting oxygenation and high sunlight from the shallow depth all fuel the area’s productivity. Georges Bank supports commercial fisheries including Atlantic cod, haddock, lobsters, cod, the largest scallop fishing area in the northeast, and more.

Long Island Sound
Long Island Sound is an important tidal estuary and marine sound nestled between New York and Connecticut with a rich and dynamic maritime history. With the mix of freshwater and the ocean, the sound supports shellfish aquaculture and several commercial and recreational fisheries for anadromous fish (fish that return to natal rivers) and marine fish. The scientific crew will complete sampling in the Long Island Sound on the second leg of the cruise.

Mid-Atlantic Bight
The Mid-Atlantic Bight (MAB) runs along the coast from Massachusetts to North Carolina and contains several smaller bights, which are deep curved coastlines. Here, the Gulf Stream and Labrador Current intersect offshore and the mixing of these waters and regional warming impacts the coastal carbonate system in the MAB. A subsurface “Cold Pool” created by seasonal stratification is important for recruitment of young fish; the lack of ventilation to the atmosphere makes it susceptible to acidification. Several bays within the MAB that ECOA-3 will sample are Hudson Bay, Delaware Bay, and Chesapeake Bay. The ECOA cruise will collect acidification data in near-shore habitats that are currently not well-sampled, but are very valuable to Mid-Atlantic's economically important shellfish resources (hard clams, oysters, and surf clams), the emerging aquaculture industry, and other fisheries. 

Chesapeake Bay
As the nation's largest estuary, Chesapeake Bay supports more than 18 million people within the watershed and is one of the most economically productive regions through maritime activities. With nutrient-rich runoff and other stressors, Chesapeake Bay experiences both ocean and coastal acidification as well as harmful algal blooms (HABs). Efforts over recent decades to improve water quality of the region help support aquaculture and several recreational and commercial fisheries including blue crab, striped bass, and other finfish.  

South Atlantic Bight
The South Atlantic Bight (SAB) is largely influenced by the Gulf Stream. Ocean and coastal acidification have disparate affects on areas within the SAB. Ocean acidification may have a greater impact on coral reefs and soft bottom corals as well as offshore fishing, whereas coastal acidification is more impactful on estuaries and coastal marshes. ECOA focuses on the offshore and near-shore sampling that can be partnered with other research in coastal areas to help build a more complete picture. Cruises like ECOA-3 are essential to determine the coastal or offshore sources of acidified waters.


PROJECT HIGHLIGHTS



OAP TWEETS


WEBSTORY







Partners

noaa-logo-rgb-2022


ceps_single-blue-web-hr


download


Marine_Sciences_Horizontal_Black__002_


ncstate-type-2x2-red-max


WHOImarkBLUE637975539010615890


rsmas-logo-print