Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Biological Response

Effects of Ocean Acidification and Summer Thermal Stress on the Physiology and Growth of the Atlantic Surfclam (<em>Spisula solidissima</em>)

This study examines the physiological response of the Atlantic surfclam (Spisula solidissima) to ocean acidification in warm summer temperatures. Working with ambient seawater, this experiment manipulated pH conditions while maintaining natural diel fluctuations and seasonal shifts in temperature. One-year-old surfclams were exposed to one of three pH conditions (ambient (control): 7.8 ± 0.07, medium: 7.51 […]

Effects of Ocean Acidification and Summer Thermal Stress on the Physiology and Growth of the Atlantic Surfclam (<em>Spisula solidissima</em>) Read More »

Nearshore microbial communities of the Pacific Northwest coasts of Canada and the U.S.

A survey of marine pelagic coastal microbial communities was conducted over a large geographic latitude range, from Cape Mendocino in northern California USA to Queen Charlotte Sound in British Columbia Canada, during the spring to summer transition. DNA metabarcoding and flow cytometry were used to characterize microbial communities. Physical and chemical oceanography indicated moderate conditions

Nearshore microbial communities of the Pacific Northwest coasts of Canada and the U.S. Read More »

Ocean acidification thresholds for decapods are unresolved

A published analysis of ocean acidification thresholds for decapod crustaceans highlights data showing the negative effects of low pH on many species. However, the methods used in the paper have substantial flaws that call into question the proposed thresholds. The quantitative metrics calculated for the meta-analysis are uninformative with respect to pH sensitivity, which raises

Ocean acidification thresholds for decapods are unresolved Read More »

Advancing an integrated understanding of land–ocean connections in shaping the marine ecosystems of coastal temperate rainforest ecoregions

Land and ocean ecosystems are strongly connected and mutually interactive. As climate changes and other anthropogenic stressors intensify, the complex pathways that link these systems will strengthen or weaken in ways that are currently beyond reliable prediction. In this review we offer a framework of land–ocean couplings and their role in shaping marine ecosystems in

Advancing an integrated understanding of land–ocean connections in shaping the marine ecosystems of coastal temperate rainforest ecoregions Read More »

Drivers of future extratropical sea surface temperature variability changes in the North Pacific

Under anthropogenic warming, future changes to climate variability beyond specific modes such as the El Niño-Southern Oscillation (ENSO) have not been well-characterized. In the Community Earth System Model version 2 Large Ensemble (CESM2-LE) climate model, the future change to sea surface temperature (SST) variability (and correspondingly marine heatwave intensity) on monthly timescales and longer is

Drivers of future extratropical sea surface temperature variability changes in the North Pacific Read More »

Eco-physiological responses of copepods and pteropods to ocean warming and acidification

We compare physiological responses of the crustacean copepod Calanus pacificus and pelagic pteropod mollusk Limacina helicina to ocean temperatures and pH by measuring biomarkers of oxidative stress, antioxidant defences, and the activity of the respiratory electron transport system in organisms collected on the 2016 West Coast Ocean Acidification cruise in the California Current System. Copepods and pteropods exhibited strong

Eco-physiological responses of copepods and pteropods to ocean warming and acidification Read More »

The effects of <em>in-vitro</em> pH decrease on the gametogenesis of the red tree coral, <em>Primnoa pacifica</em>

Primnoa pacifica is the most ecologically important coral species in the North Pacific Ocean and provides important habitat for commercially important fish and invertebrates. Ocean acidification (OA) is more rapidly increasing in high-latitude seas because anthropogenic CO2 uptake is greater in these regions. This is due to the solubility of CO2 in cold water and the reduced buffering

The effects of <em>in-vitro</em> pH decrease on the gametogenesis of the red tree coral, <em>Primnoa pacifica</em> Read More »

A multi-model approach to understanding the role of Pacific sardine in the California Current food web

We develop a multi-model approach to explore how abundance of a forage fish (Pacific sardine Sardinops sagax) impacts the ecosystem and predators in the California Current, a region where sardine and anchovy Engraulis mordax have recently declined to less than 10% of contemporary peak abundances. We developed or improved applications of 3 ecosystem modeling approaches: Ecopath, Model of

A multi-model approach to understanding the role of Pacific sardine in the California Current food web Read More »

Pacific geoduck (<em>Panopea generosa</em>) resilience to natural pH variation

Pacific geoduck aquaculture is a growing industry, however, little is known about how geoduck respond to varying environmental conditions, or how the industry will fare under projected climate conditions. To understand how geoduck production may be impacted by low pH associated with ocean acidification, multi-faceted environmental heterogeneity needs to be included to understand species and community

Pacific geoduck (<em>Panopea generosa</em>) resilience to natural pH variation Read More »

Effects of ocean acidification on the respiration and feeding of juvenile red and blue king crabs (<Em>Paralithodes camtschaticus</em> and <em>P. platypus</em>)

Ocean acidification is a decrease in pH resulting from dissolution of anthropogenic CO2 in the oceans that has physiological effects on many marine organisms. Juvenile red and blue king crabs (Paralithodes camtschaticus and P. platypus) exhibit both increased mortality and decreased growth in acidified waters. In this study, we determined how ocean acidification affects oxygen consumption, feeding rates,

Effects of ocean acidification on the respiration and feeding of juvenile red and blue king crabs (<Em>Paralithodes camtschaticus</em> and <em>P. platypus</em>) Read More »

Forecasts for Alaska Fisheries

Crab pots and fishing nets in Alaska's Dutch Harbor
Image credit: Michael Theberge

Understanding seasonal changes in ocean acidification in Alaskan waters and the potential impacts to the multi-billion-dollar fishery sector is a main priority. Through work funded by NOAA’s Ocean Acidification Program, the Pacific Marine Environmental Laboratory developed a model capable of depicting past ocean chemistry conditions for the Bering Sea and is now testing the ability of this model to forecast future conditions. This model is being used to develop an ocean acidification indicator provided to fisheries managers in the annual NOAA Eastern Bering Sea Ecosystem Status Report.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

Closeup of oysters cupped in someone's hands

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action