Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Biological Response

Evaluating the Evolving Ocean Acidification Risk to Dungeness Crab: Time-Series Observations and Modeling on the Olympic Coast, Washington, USA

The Olympic Coast of Washington is home to four Coastal Treaty Tribes who have relied on the region’s rich marine resources since time immemorial. The region is characterized by large dynamic ranges of physical and biogeochemical oceanographic parameters, particularly during the upwelling season (April–September). Here, we present novel estimates of ocean acidification metrics—pH and calcium […]

Evaluating the Evolving Ocean Acidification Risk to Dungeness Crab: Time-Series Observations and Modeling on the Olympic Coast, Washington, USA Read More »

Mississippi river chemistry impacts on the interannual variability of aragonite saturation state in the Northern Gulf of Mexico

In the northern Gulf of Mexico shelf, the Mississippi-Atchafalaya River System (MARS) impacts the carbonate system by delivering freshwater with a distinct seasonal pattern in both total alkalinity (Alk) and dissolved inorganic carbon (DIC), and promoting biologically-driven changes in DIC through nutrient inputs. However, how and to what degree these processes modulate the interannual variability

Mississippi river chemistry impacts on the interannual variability of aragonite saturation state in the Northern Gulf of Mexico Read More »

Variable exposure to multiple climate stressors across the California marine protected area network and policy implications

The efficacy of marine protected areas (MPAs) may be reduced when climate change disrupts the ecosystems and human communities around which they are designed. The effects of ocean warming on MPA functioning have received attention but less is known about how multiple climatic stressors may influence MPAs efficacy. Using a novel dataset incorporating 8.8 million

Variable exposure to multiple climate stressors across the California marine protected area network and policy implications Read More »

Coral disease outbreak at the remote Flower Garden Banks, Gulf of Mexico

East and West Flower Garden Bank (FGB) are part of Flower Garden Banks National Marine Sanctuary (FGBNMS) in the northwest Gulf of Mexico. This geographically-isolated reef system contains extensive coral communities with the highest coral cover (>50%) in the continental United States due, in part, to their remoteness and depth, and have historically exhibited low

Coral disease outbreak at the remote Flower Garden Banks, Gulf of Mexico Read More »

Ocean acidification alters properties of the exoskeleton in adult Tanner crabs, <em>Chionoecetes bairdi</em>

Ocean acidification can affect the ability of calcifying organisms to build and maintain mineralized tissue. In decapod crustaceans, the exoskeleton is a multilayered structure composed of chitin, protein and mineral, predominately magnesian calcite or amorphous calcium carbonate (ACC). We investigated the effects of acidification on the exoskeleton of mature (post-terminal-molt) female southern Tanner crabs, Chionoecetes bairdi.

Ocean acidification alters properties of the exoskeleton in adult Tanner crabs, <em>Chionoecetes bairdi</em> Read More »

A Transcriptomic Analysis of Phenotypic Plasticity in Crassostrea virginica Larvae under Experimental Acidification

Ocean acidification (OA) is a major threat to marine calcifiers, and little is known regarding acclimation to OA in bivalves. This study combined physiological assays with next-generation sequencing to assess the potential for recovery from and acclimation to OA in the eastern oyster (Crassostrea virginica) and identify molecular mechanisms associated with resilience. In a reciprocal

A Transcriptomic Analysis of Phenotypic Plasticity in Crassostrea virginica Larvae under Experimental Acidification Read More »

Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America (2014–2018)

Coastal and estuarine ecosystems fringing the North Pacific Ocean are particularly vulnerable to ocean acidification, hypoxia, and intense marine heatwaves as a result of interactions among natural and anthropogenic processes. Here, we characterize variability during a seasonally resolved cruise time series (2014–2018) in the southern Salish Sea (Puget Sound, Strait of Juan de Fuca) and

Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America (2014–2018) Read More »

The combined effects of ocean warming and ocean acidification on Pacific cod (<em>Gadus macrocephalus</em>) early life stages

The eastern North Pacific is simultaneously experiencing ocean warming (OW) and ocean acidification (OA), which may negatively affect fish early life stages. Pacific cod (Gadus macrocephalus) is an economically and ecologically important species with demonstrated sensitivity to OW and OA, but their combined impacts are unknown. Through a ~ 9-week experiment, Pacific cod embryos and larvae were

The combined effects of ocean warming and ocean acidification on Pacific cod (<em>Gadus macrocephalus</em>) early life stages Read More »

Ocean acidification in the Gulf of Mexico: Drivers, impacts, and unknowns

Ocean acidification (OA) has resulted in global-scale changes in ocean chemistry, which can disturb marine organisms and ecosystems. Despite its extensively populated coastline, many marine-dependent communities, and valuable economies, the Gulf of Mexico (GOM) remains a relatively understudied region with respect to acidification. In general, the warm waters of the GOM are better buffered from

Ocean acidification in the Gulf of Mexico: Drivers, impacts, and unknowns Read More »

Resilience of Black Sea Bass Embryos to Increased Levels of Carbon Dioxide

After a decade of research on how embryonic fish will respond to the increased dissolved carbon dioxide (ρCO2) levels predicted for the next century, no uniform response to near future acidification has been observed among marine species. We exposed Black Sea Bass Centropristis striata (BSB) embryos to varied levels of ρCO2 (microatmospheres [μatm]) for 48 h during seasonal experiments

Resilience of Black Sea Bass Embryos to Increased Levels of Carbon Dioxide Read More »

Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action