Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Biological Response

Fish or not fish—fisheries participation and harvest diversification under economic and ecological change

Fish harvesters respond to economic, regulatory, and environmental changes within complex and often highly uncertain decision-making processes. Analyzing and quantifying human decisions can improve our understanding and sustainable management of marine systems. Wild fish harvesters face high income volatility linked to natural variability in fish abundance, changing ocean environments, and world market dynamics. Past research […]

Fish or not fish—fisheries participation and harvest diversification under economic and ecological change Read More »

Coral reef carbonate accretion rates track stable gradients in seawater carbonate chemistry across the U.S. Pacific Islands

The U.S. Pacific Islands span a dramatic natural gradient in climate and oceanographic conditions, and benthic community states vary significantly across the region’s coral reefs. Here we leverage a decade of integrated ecosystem monitoring data from American Samoa, the Mariana Archipelago, the main and Northwestern Hawaiian Islands, and the U.S. Pacific Remote Island Areas to

Coral reef carbonate accretion rates track stable gradients in seawater carbonate chemistry across the U.S. Pacific Islands Read More »

Quantifying Net Community Production and Calcification at Station ALOHA Near Hawai’i: Insights and Limitations From a Dual Tracer Carbon Budget Approach

A budget approach is used to disentangle drivers of the seasonal mixed layer carbon cycle at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) in the North Pacific Subtropical Gyre (NPSG). The budget utilizes data from the WHOTS (Woods Hole—Hawaii Ocean Time-series Site) mooring, and the ship-based Hawai’i Ocean Time-series (HOT) in the NPSG, a region

Quantifying Net Community Production and Calcification at Station ALOHA Near Hawai’i: Insights and Limitations From a Dual Tracer Carbon Budget Approach Read More »

Eutrophication, Harmful Algae, Oxygen Depletion, and Acidification

Eutrophication is among the most widespread and deleterious anthropogenic impacts to coastal marine ecosystems. The Chesapeake Bay (CB) and Northern Adriatic Sea (NAS) have long histories of nutrient-fueled eutrophication. We compare the susceptibility and symptoms of eutrophication in both systems and discuss recent reversals of eutrophication (oligotrophication) and future considerations. Differences in the residence time

Eutrophication, Harmful Algae, Oxygen Depletion, and Acidification Read More »

Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific

In an era of global change, the fate and form of reef habitats will depend on shifting assemblages of organisms and their responses to multiple stressors. Multiphyletic assemblages of calcifying and bioeroding species contribute to a dynamic balance between constructive and erosive processes, and reef-framework growth occurs only when calcium-carbonate deposition exceeds erosion. Each contributing

Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific Read More »

Linear extension, skeletal density, and calcification rates of the blue coral <em>Heliopora coerulea</em>

The brooding reef-building octocoral Heliopora is widespread on Indo-West Pacific reefs and appears to be relatively resistant to thermal stress, which may enable it to persist locally while scleractinians diminish under Anthropocene conditions. However, basic physiological measurements of “blue corals” are lacking and prevent their inclusion in trait-based studies. We address this by quantifying rates

Linear extension, skeletal density, and calcification rates of the blue coral <em>Heliopora coerulea</em> Read More »

Understanding Anthropogenic Impacts on pH and Aragonite Saturation State in Chesapeake Bay: Insights From a 30-Year Model Study

Ocean acidification (OA) is often defined as the gradual decline in pH and aragonite saturation state (ΩAr) for open ocean waters as a result of increasing atmospheric pCO2. Potential long-term trends in pH and ΩAr in estuarine environments are often obscured by a variety of other factors, including changes in watershed land use and associated riverine carbonate

Understanding Anthropogenic Impacts on pH and Aragonite Saturation State in Chesapeake Bay: Insights From a 30-Year Model Study Read More »

Unveiling hidden sponge biodiversity within the Hawaiian reef cryptofauna

Our perception of reef diversity is dominated by corals, fish, and a few other groups that visibly dominate the reef surface. However, the bulk of reef biodiversity resides within the reef framework, and this cryptobiota is fundamentally important for the surface community. Sponges are abundant and conspicuous on the reef surface in productive, continental reefs,

Unveiling hidden sponge biodiversity within the Hawaiian reef cryptofauna Read More »

Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom <em>Pseudo-nitzschia australis</em> from the California Current System

Pseudo-nitzschia australis (Frenguelli), a toxigenic pennate diatom capable of producing the neurotoxin domoic acid (DA), was examined in unialgal laboratory cultures to quantify its physiological response to ocean acidification (OA) – the decline in pH resulting from increasing partial pressure of CO2 (pCO2) in the oceans. Toxic blooms of P. australis are common in the coastal waters of eastern

Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom <em>Pseudo-nitzschia australis</em> from the California Current System Read More »

Impaired hatching exacerbates the high CO<sub>2</sub> sensitivity of embryonic sand lance <em>Ammodytes dubius</em>

Rising oceanic partial pressure of CO2 (pCO2) could affect many traits in fish early life stages, but only few species to date have shown direct CO2-induced survival reductions. This might partly be because species from less CO2-variable, offshore environments in higher latitudes are currently underrepresented in the literature. We conducted new experimental work on northern sand

Impaired hatching exacerbates the high CO<sub>2</sub> sensitivity of embryonic sand lance <em>Ammodytes dubius</em> Read More »

Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action