Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Monitoring & Modeling

Novel and disappearing climates in the global surface ocean from 1800 to 2100

Marine ecosystems are experiencing unprecedented warming and acidification caused by anthropogenic carbon dioxide. For the global sea surface, we quantified the degree that present climates are disappearing and novel climates (without recent analogs) are emerging, spanning from 1800 through different emission scenarios to 2100. We quantified the sea surface environment based on model estimates of […]

Novel and disappearing climates in the global surface ocean from 1800 to 2100 Read More »

Why are Surface Ocean pH and CaCO<sub>3</sub> Saturation State Often out of Phase in Spatial Patterns and Seasonal Cycles?

Although both pH and calcium carbonate mineral saturation states (Ω) are good metrics for ocean acidification, in the global surface ocean their spatial patterns and seasonal cycles are often out of phase, which appears counter intuitive. To explain this, we separate pH and Ω changes into thermal and nonthermal components. Thermal components are mainly related

Why are Surface Ocean pH and CaCO<sub>3</sub> Saturation State Often out of Phase in Spatial Patterns and Seasonal Cycles? Read More »

A monthly surface <em>p</em>CO<sub>2</sub> product for the California Current Large Marine Ecosystem

A common strategy for calculating the direction and rate of carbon dioxide gas (CO2) exchange between the ocean and atmosphere relies on knowledge of the partial pressure of CO2 in surface seawater (pCO2(sw)), a quantity that is frequently observed by autonomous sensors on ships and moored buoys, albeit with significant spatial and temporal gaps. Here we

A monthly surface <em>p</em>CO<sub>2</sub> product for the California Current Large Marine Ecosystem Read More »

OOI Biogeochemical Sensor Data Best Practices and User Guide. Version 1.1.1. [GOOS ENDORSED PRACTICE]

The GOOS best practice endorsement process has been developed by the GOOS and the Observation Coordination Group (OCG) in conjunction with the Ocean Best Practices System (OBPS). The aim is for global networks (eg the International Argo programme through GOOS OCG) or groups of experts (eg. the GOOS Biogeochemical Panel) to endorse and share methods

OOI Biogeochemical Sensor Data Best Practices and User Guide. Version 1.1.1. [GOOS ENDORSED PRACTICE] Read More »

The Combined Effects of Ocean Acidification and Respiration on Habitat Suitability for Marine Calcifiers Along the West Coast of North America

The combined effect of ocean acidification and respiration in the California Current Ecosystem is to reduce water column pH and aragonite saturation state, resulting in a compression of the overall size of suitable habitat for marine calcifiers. The addition of excess anthropogenic CO2 also makes it more likely that critical biological thresholds are crossed and shell

The Combined Effects of Ocean Acidification and Respiration on Habitat Suitability for Marine Calcifiers Along the West Coast of North America Read More »

GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product

The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2022 is an update of the previous version, GLODAPv2.2021 (Lauvset et al., 2021). The major changes are

GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product Read More »

A 37-year record of ocean acidification in the Southern California current

Long-term ocean time series have proven to be the most robust approach for direct observation of climate change processes such as Ocean Acidification. The California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has collected quarterly samples for seawater inorganic carbon since 1983. The longest time series is at CalCOFI line 90 station 90 from 1984–present, with

A 37-year record of ocean acidification in the Southern California current Read More »

A decade-long cruise time series (2008–2018) of physical and biogeochemical conditions in the southern Salish Sea, North America

Coastal and estuarine waters of the northern California Current system and southern Salish Sea host an observational network capable of characterizing biogeochemical dynamics related to ocean acidification, hypoxia, and marine heatwaves. Here, we compiled data sets from a set of cruises conducted in estuarine waters of Puget Sound (southern Salish Sea) and its boundary waters

A decade-long cruise time series (2008–2018) of physical and biogeochemical conditions in the southern Salish Sea, North America Read More »

Widespread and increasing near-bottom hypoxia in the coastal ocean off the United States Pacific Northwest

The 2021 summer upwelling season off the United States Pacific Northwest coast was unusually strong leading to widespread near-bottom, low-oxygen waters. During summer 2021, an unprecedented number of ship- and underwater glider-based measurements of dissolved oxygen were made in this region. Near-bottom hypoxia, that is dissolved oxygen less than 61 µmol kg−1 and harmful to marine animals, was

Widespread and increasing near-bottom hypoxia in the coastal ocean off the United States Pacific Northwest Read More »

Emerging Applications of Longstanding Autonomous Ocean Carbon Observations

For over two decades, NOAA’s Pacific Marine Environmental Laboratory (PMEL) has been developing and deploying autonomous ocean carbon measurement technologies. PMEL currently maintains a network of air-sea CO2 and ocean acidification time-series measurements on 33 surface buoys, including the world’s longest record of air-sea CO2 measured from a buoy. These sites are located in every

Emerging Applications of Longstanding Autonomous Ocean Carbon Observations Read More »

Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action