Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

New Tool Helps Oyster Growers Prepare for Changing Ocean Chemistry

NOAA Research, Laura Newcomb

</ br>
For Bill Mook, coastal acidification is one thing his oyster hatchery cannot afford to ignore. 
Mook Sea Farm depends on seawater from the Gulf of Maine pumped into a Quonset hut-style building where tiny oysters are grown in tanks. Mook sells these tiny oysters to other oyster farmers or transfers them to his oyster farm on the Damariscotta River where they grow large enough to sell to restaurants and markets on the East Coast.
The global ocean has soaked up one third of human-caused carbon dioxide (CO2) emissions since the start of the Industrial Era, increasing the CO2 and acidity of seawater. Increased seawater acidity reduces available carbonate, the building blocks used by shellfish to grow their shells. Rain washing fertilizer and other nutrients into nearshore waters can also increase ocean acidity.
Back in 2013, Mook teamed up with fisherman-turned-oceanographer Joe Salisbury of the University of New Hampshire to understand how changing seawater chemistry may hamper the growth and survival of oysters in his hatchery and oyster farm.
Salisbury and his team adapted and installed in the hatchery sophisticated technology that Mook calls “the black box.” Sensors housed inside a heavy black plastic case the size of a breadbox estimate the amount of carbonate in seawater pumped into the hatchery by measuring carbon dioxide and the alkalinity, or the capacity of the water to buffer against increases in acidity. The “black box” was developed with funding from the NOAA’s Ocean Acidification Program and Integrated Ocean Observing System.
Mook compares ocean acidification to a train barreling down the tracks headed for his business. By measuring the year-to-year changes in carbonate and matching that against how well his oysters do in a particular year, he says he’ll understand how oysters grow under different conditions. These tools help him learn how fast and at what time the train may arrive.
“We see a growth opportunity for this equipment,” Salisbury says. He and his team are now using “black boxes” in the waters off Puerto Rico to map where changes in acidity may contribute to coral reef erosion. Starting this year, NOAA Ship Henry B. Bigelow will be outfitted with black boxes to collect carbonate chemistry data during fisheries surveys along the eastern seaboard. NOAA will use this data to help improve predictions of how ocean acidification may affect valuable resources and the people, like Mook, whose livelihoods depend on them.

Editor's note: Laura Newcomb is a Sea Grant Knauss Fellow at NOAA Research's Office of Laboratories and Cooperative Institutes. 
For more information, please contact Monica Allen, director of public affairs at NOAA Research, at 301-734-1123 or monica.allen@noaa.gov

 

Share this post:

Related Posts

Now Hiring! Physical Scientist

Applications Accepted until 11/19/2024 This position is located in the National Oceanic and Atmospheric Administration (NOAA), Oceanic and Atmospheric Research (OAR), Ocean Acidification Program (OAP)

Read More >
Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action