Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOAA and Partners Launch Research Cruise of East Coast to Study Ocean Acidification

By: NOAA Ocean Acidification Program

NOAA and partners launch research cruise of East Coast to study ocean acidification

NOAA and scientists from Princeton, Old Dominion University, and the Universities of New Hampshire, Delaware, and Miami set off on June 19th from Newport, Rhode Island aboard NOAA ship Gordon Gunter on a research cruise to better understand ocean acidification and its drivers along the U.S. East Coast. 


The R/V Gordon Gunter stationed in Newport, RI will be surveying carbonate chemistry on a 34 day research cruise,which began in the Canadian Maritime waters and will end along the Florida coast. Principal investigators of the expedition are Dr. Joe Salisbury from University of New Hampshire and Dr. Janet Reimer from University of Delaware Photo credit: Marc Emond, University of New Hampshire.  

This research cruise is just one part of a larger effort supported by the NOAA Ocean Acidification Program to better understand how ocean chemistry along all the U.S. coasts is changing in response to ocean acidification and where marine organisms may be at greatest risk. Similar cruises have taken place on the U.S. West Coast and the Gulf of Mexico. Understanding why and how fast our ocean chemistry is changing in different areas will allow scientists to better predict future changes and explore ways to adapt to those shifts.
The Gunter will travel north to survey the waters of the Nova Scotia Shelf and will then steam south, surveying waters close to shore to provide more detailed information about water chemistry within the Gulf of Maine, Long Island Sound, the Mid-Atlantic and Southern Bight regions than previous surveys. The ship will also investigate central Florida waters before reaching Miami on July 24.”

“We will be covering a larger area of the East Coast and going much closer to shore than ever before so that we can better understand the many factors contributing to ocean acidification,” said Dwight Gledhill, Deputy Director of the NOAA Ocean Acidification Program.  

This is the first time that scientists will get an in depth view of the waters in the Gulf of Maine. 
“Understanding the chemistry of water on the Scotian Shelf is critical for us to understand how ocean acidification might unfold in Maine,” Gledhill says, “The Labrador Current, which flows over the shelf and into this region is freshening due to climate change and increased Arctic ice melt. These fresher waters are more corrosive, so understanding how that will affect Maine waters is an important part of this survey.”” 

By collecting and analyzing water samples in near shore and deeper waters, scientists will better understand what drives the process of ocean acidification in different areas of the East Coast shelf. Another area new to the survey is Long Island Sound, an urbanized estuary, which is known to become acidic with low oxygen or hypoxia events. This is the first time that both carbon dioxide and oxygen, along with nutrient levels will be measured in these waters. These measurements may give insight into how nutrient run off from land based activities will impact seawater chemistry in this area. 

The CTD/rosette is an instrument that is deployed into the water to measure conductivity, temperature and density.  This rosette has a mascot for good luck at sea; “Betty” the praying mantis. Photo credit: Marc Emond, University of New Hampshire.
The ship and its crew will hug the coast as they proceed South and will be coordinating with the Environmental Protection Agency (EPA) to take measurements in very near shore waters that are too shallow for the Gunter to reach. In both Narragansett and Delaware Bays, scientists from the EPA will continue with measurements landward of the Gunter’s coastal station in coastal waters. This Mid- Atlantic Shelf region is important for sea scallop production, a significant resource and important fishery and component of the economy in this region.  

The ship will come to port in Norfolk, Va., on July 4 before continuing south. Throughout the entire survey, scientists on board will also look at how single-celled marine plants, or phytoplankton, affect ocean chemistry. Tracking ocean acidification which is caused in large part by an increase in atmospheric carbon dioxide from the burning of fossil fuels, demands careful determination of not only the marine carbonate system, but also a suite of measures that give insight into the key organisms which can modify the chemistry. Both photosynthesis and respiration of these small marine plants and other tiny organisms can alter carbon dioxide levels in the water.
Scientists will measure both carbon and oxygen in the water to better understand how they affect the growth of phytoplankton that are at the base of the food chain. Phytoplankton are not only important to the marine food chain, but these marine plants also control carbon chemistry. Scientists from the National Aeronautic and Space Administration (NASA) are working to use satellite capabilities to “see” the kind phytoplankton in the ocean by identifying the color of the ocean. Researchers on board the Gunter will sample phytoplankton in the water as a NASA satellite measures the ocean’s color in the same location.
“There are only a few things you can measure from space such as temperature, salinity and ocean color,” says Gledhill. “If we can confirm what phytoplankton are in the water at the same time the satellite is over head, while also measuring carbon chemistry this could allow scientists to relate changes in carbon chemistry to the types of phytoplankton in the water sometime in the future.”
This cruise will cover new areas and get more in depth information along the U.S. East Coast to understand the factors that influence ocean and coastal acidification. Because the East Coast has a broad shallow shelf, potentially corrosive, freshwater discharge out of rivers into the coastal ocean could be a major contributor to changing ocean chemistry. This survey will allow scientists to understand how fresher waters, coastal influences, and phytoplankton may alter our ocean chemistry. This environmental information on ocean acidification is essential to predicting its effects on important marine resources, so that communities can mitigate and adapt to these changes.

 

Share this post:

Related Posts

NOAA OAP’s 2023 Accomplishments

NOAA OAP selects, funds, and manages high priority, high-quality research, monitoring, and outreach activities to understand how fast the acidification is changing, and impacts these

Read More >
Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action