Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Ming Li

Assessing drivers of estuarine pH: A comparative analysis of the continental U.S.A.’s two largest estuaries

In estuaries, local processes such as changing material loads from the watershed and complex circulation create dynamic environments with respect to ecosystem metabolism and carbonate chemistry that can strongly modulate impacts of global atmospheric CO2 increases on estuarine pH. Long-term (> 20 yr) surface water pH records from the USA’s two largest estuaries, Chesapeake Bay (CB) and […]

Assessing drivers of estuarine pH: A comparative analysis of the continental U.S.A.’s two largest estuaries Read More »

Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling

Uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has acidified the ocean and threatened the health of marine organisms and their ecosystems. In coastal waters, acidification is often enhanced by CO2 and acids produced under high rates of biological respiration. However, less is known about buffering processes that counter coastal acidification in eutrophic and seasonally

Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling Read More »

Understanding Anthropogenic Impacts on pH and Aragonite Saturation State in Chesapeake Bay: Insights From a 30-Year Model Study

Ocean acidification (OA) is often defined as the gradual decline in pH and aragonite saturation state (ΩAr) for open ocean waters as a result of increasing atmospheric pCO2. Potential long-term trends in pH and ΩAr in estuarine environments are often obscured by a variety of other factors, including changes in watershed land use and associated riverine carbonate

Understanding Anthropogenic Impacts on pH and Aragonite Saturation State in Chesapeake Bay: Insights From a 30-Year Model Study Read More »

Discerning effects of warming, sea level rise and nutrient management on long-term hypoxia trends in Chesapeake Bay

Analyses of dissolved oxygen concentration in Chesapeake Bay over the past three decades suggested seasonally-dependent changes in hypoxic volume and an earlier end of hypoxic conditions. While these studies hypothesized and evaluated multiple potential driving mechanisms, quantitative evidence for the relative effects of various drivers has yet to be presented. In this study, a coupled

Discerning effects of warming, sea level rise and nutrient management on long-term hypoxia trends in Chesapeake Bay Read More »

Effects of Wind Straining on Estuarine Stratification: A Combined Observational and Modeling Study

A combined observational and numerical modeling study was conducted to clarify the effects of wind straining on estuarine stratification. Long-term mooring observations in the middle of Chesapeake Bay showed an asymmetric stratification response to along-channel winds. The stratification decreased under up-estuary winds. Under down-estuary winds, however, the stratification increased at moderate wind speeds but decreased

Effects of Wind Straining on Estuarine Stratification: A Combined Observational and Modeling Study Read More »

Ecosystem Metabolism and Carbon Balance in Chesapeake Bay: A 30-Year Analysis Using a Coupled Hydrodynamic-Biogeochemical Model

The carbon cycle in estuarine environments is difficult to quantify because of substantial spatiotemporal heterogeneity in the sources, exchanges, and fates of carbon. We overcame these challenges with a multidecade numerical modeling analysis of seasonal, interannual, and decadal variability in net ecosystem metabolism (NEM) and associated carbon fluxes in Chesapeake Bay. Interannual variability in NEM

Ecosystem Metabolism and Carbon Balance in Chesapeake Bay: A 30-Year Analysis Using a Coupled Hydrodynamic-Biogeochemical Model Read More »

Stressing over the Complexities of Multiple Stressors in Marine and Estuarine Systems

Aquatic ecosystems are increasingly threatened by multiple human-induced stressors associated with climate and anthropogenic changes, including warming, nutrient pollution, harmful algal blooms, hypoxia, and changes in CO2 and pH. These stressors may affect systems additively and synergistically but may also counteract each other. The resultant ecosystem changes occur rapidly, affecting both biotic and abiotic components and

Stressing over the Complexities of Multiple Stressors in Marine and Estuarine Systems Read More »

Natural and Anthropogenic Drivers of Acidification in Large Estuaries

Oceanic uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have impacts on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO2-induced acidification is enhanced by

Natural and Anthropogenic Drivers of Acidification in Large Estuaries Read More »

Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action