Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Biological Response

Plasticity in skeletal characteristics of nursery-raised staghorn coral, <em>Acropora cervicornis</em>

Staghorn coral, Acropora cervicornis, is a threatened species and the primary focus of western Atlantic reef restoration efforts to date. We compared linear extension, calcification rate, and skeletal density of nursery-raised A. cervicornis branches reared for 6 months either on blocks attached to substratum or hanging from PVC trees in the water column. We demonstrate that branches grown on […]

Plasticity in skeletal characteristics of nursery-raised staghorn coral, <em>Acropora cervicornis</em> Read More »

A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability

Kelp forests are among the world’s most productive marine ecosystems, yet little is known about their biogeochemistry. This study presents a 14-month time series (July 2013–August 2014) of surface and benthic dissolved inorganic carbon and total alkalinity measurements, along with accompanying hydrographic measurements, from six locations within a central California kelp forest. We present ranges and patterns

A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability Read More »

Modeling food web effects of low sardine and anchovy abundance in the California Current

Populations of sardine, anchovy, and other forage species can fluctuate to low levels due to climate variability and fishing, leading to indirect effects on marine food webs. In the context of recent declines of sardine (Sardinops sagax) and anchovy (Engraulis mordax) in the California Current, we apply an end-to-end Atlantis ecosystem model that is spatially explicit, includes

Modeling food web effects of low sardine and anchovy abundance in the California Current Read More »

Elevated CO<sub>2</sub> does not exacerbate nutritional stress in larvae of a Pacific flatfish

Multiple aspects of climate change are expected to co-occur such that ocean acidification will take place in conjunction with warming and a range of trophic changes. Previous studies have demonstrated that nutritional condition plays a significant role in the responses of invertebrates to ocean acidification, but similar studies have yet to be conducted with marine

Elevated CO<sub>2</sub> does not exacerbate nutritional stress in larvae of a Pacific flatfish Read More »

The Carbonate Chemistry of the “Fattening Line,” Willapa Bay, 2011–2014

Willapa Bay has received a great deal of attention in the context of rising atmospheric CO2 and the concomitant effects of changes in bay carbonate chemistry, referred to as ocean acidification, and the potential effects on the bay’s naturalized Pacific oyster (Crassostrea gigas) population and iconic oyster farming industry. Competing environmental stressors, historical variability in the

The Carbonate Chemistry of the “Fattening Line,” Willapa Bay, 2011–2014 Read More »

Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, <em>Acropora cervicornis</em>

The relationship between the coral genotype and the environment is an important area of research in degraded coral reef ecosystems. We used a reciprocal outplanting experiment with 930 corals representing ten genotypes on each of eight reefs to investigate the influence of genotype and the environment on growth and survivorship in the threatened Caribbean staghorn

Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, <em>Acropora cervicornis</em> Read More »

Ocean acidification leads to altered micromechanical properties of the mineralized cuticle in juvenile red and blue king crabs

Ocean acidification (OA) adversely affects a broad range of marine calcifying organisms. Crustaceans, however, exhibit mixed responses to OA, with growth or survival negatively affected in some species, but unaffected or positively affected in others. In crustaceans, the mineralized cuticle resists mechanical loads, provides protection from the environment, and enables mobility, but little is known about

Ocean acidification leads to altered micromechanical properties of the mineralized cuticle in juvenile red and blue king crabs Read More »

Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast

The pteropod Limacina helicina frequently experiences seasonal exposure to corrosive conditions (Ωar  < 1) along the US West Coast and is recognized as one of the species most susceptible to ocean acidification (OA). Yet, little is known about their capacity to acclimatize to such conditions. We collected pteropods in the California Current Ecosystem (CCE) that differed in the severity

Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast Read More »

Taking the metabolic pulse of the world’s coral reefs

Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism

Taking the metabolic pulse of the world’s coral reefs Read More »

El Niño-Related Thermal Stress Coupled With Upwelling-Related Ocean Acidification Negatively Impacts Cellular to Population-Level Responses in Pteropods Along the California Current System With Implications for Increased Bioenergetic Costs

Understanding the interactive effects of multiple stressors on pelagic mollusks associated with global climate change is especially important in highly productive coastal ecosystems of the upwelling regime, such as the California Current System (CCS). Due to temporal overlap between a marine heatwave, an El Niño event, and springtime intensification of the upwelling, pteropods of the

El Niño-Related Thermal Stress Coupled With Upwelling-Related Ocean Acidification Negatively Impacts Cellular to Population-Level Responses in Pteropods Along the California Current System With Implications for Increased Bioenergetic Costs Read More »

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action