Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Carbon Dioxide Removal

Strategy for NOAA Carbon Dioxide Removal (CDR) Research: A White Paper documenting a potential NOAA CDR Science Strategy as an element of NOAA’s Climate Interventions Portfolio

This document is intended to serve as a reference for exploration of carbon removal research at NOAA. The report was drafted by authors from across NOAA to provide strategic direction to relevant labs and programs in multiple line offices. The goal has been to assemble as much information as possible in order to facilitate conversations […]

Strategy for NOAA Carbon Dioxide Removal (CDR) Research: A White Paper documenting a potential NOAA CDR Science Strategy as an element of NOAA’s Climate Interventions Portfolio Read More »

New and updated global empirical seawater property estimation routines

We introduce three new Empirical Seawater Property Estimation Routines (ESPERs) capable of predicting seawater phosphate, nitrate, silicate, oxygen, total titration seawater alkalinity, total hydrogen scale pH (pHT), and total dissolved inorganic carbon (DIC) from up to 16 combinations of seawater property measurements. The routines generate estimates from neural networks (ESPER_NN), locally interpolated regressions (ESPER_LIR), or

New and updated global empirical seawater property estimation routines Read More »

Mechanisms Driving Decadal Changes in the Carbonate System of a Coastal Plain Estuary

Seawater pH, a measure of how acidic or basic water is, is a crucial water quality parameter influencing the growth and health of marine organisms, such as oysters, fishes and crabs. Decreasing pH, commonly referred to as acidification, is a severe environmental issue that has been exacerbated by human activities since the industrial revolution. In

Mechanisms Driving Decadal Changes in the Carbonate System of a Coastal Plain Estuary Read More »

Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay

The Chesapeake Bay is a large coastal-plain estuary that has experienced considerable anthropogenic change over the past century. At the regional scale, land-use change has doubled the nutrient input from rivers and led to an increase in riverine carbon and alkalinity. The bay has also experienced global changes, including the rise of atmospheric temperature and CO2.

Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay Read More »

Landsat 8 image of the Shantar Islands and part of Uda Bay in the Western Sea of Okhotsk taken 24 September 2021. Credit: NASA

Announcing $24.3M investment advancing marine carbon dioxide removal research

The NOAA Ocean Acidification Program on behalf of the National Oceanographic Partnership Program (NOPP) announces $24.3M of funding aimed at bringing together academic researchers, federal scientists and industry to advance research in marine carbon dioxide removal. Funding supports research that expands understanding of various aspects of marine carbon dioxide removal approaches, risks and co-benefits including

Announcing $24.3M investment advancing marine carbon dioxide removal research Read More »

Fisherman pulling up sugar kelp. Seaweed cultivation may be one avenue for marine carbon dioxide removal and mitigating ocean acidification. Credit: GreenWave/Ron Gautreau.

Carbon capture and ocean acidification mitigation potential by seaweed farms in tropical and subtropical coastal environments

Award amount: $1,451,575Duration: 3 yearsFunding agency: NOAA Ocean Acidification Program (OAP), National Oceanographic Partnership Program (NOPP) Why we care Growing seaweed in the ocean could be one way to alleviate some of the impacts by climate change and ocean acidification. We need to know how much carbon can be captured by cultivated seaweed and the potential

Carbon capture and ocean acidification mitigation potential by seaweed farms in tropical and subtropical coastal environments Read More »

Plankton bloom seen from space. Credit: NASA

Multiscale observing system simulation experiments for iron fertilization in the Southern Ocean, Equatorial Pacific, and Northeast Pacific

Why we care Iron is a critical limiting nutrient for phytoplankton in the ocean. Iron fertilization adds this limiting nutrient to promote phytoplankton blooms as a way to take up carbon dioxide and store carbon when they sink. Unknowns on the effectiveness, measurement and monitoring need to be addressed. To address these unknowns, this project

Multiscale observing system simulation experiments for iron fertilization in the Southern Ocean, Equatorial Pacific, and Northeast Pacific Read More »

Breaking wave in sunlight. Credit: NOAA Ocean Service

Electrolysis-driven weathering of basic minerals for long-term ocean buffering and CO2 reduction

Why we care Ocean alkalinity enhancement has the potential to capture carbon and mitigate ocean acidification. While ocean alkalinity enhancement is a promising approach for removing carbon from the atmosphere, there are important questions about its impacts on the marine environment. A strategic roadmap identifying and addressing concerns about deployment of ocean alkalinity enhancement is

Electrolysis-driven weathering of basic minerals for long-term ocean buffering and CO2 reduction Read More »

Terrestrial liming at golf courses serve as testbeds for this method for carbon capture and mitigating acidification. Credit: Your Golf Travel (Creative Commons)

An opportunity to study Ocean Alkalinity Enhancement, carbon dioxide removal, and ecosystem impacts through coastal liming

Why we care Terrestrial liming, or the addition of a basic (alkaline) material like calcium carbonate to crops and lawns is a common agricultural soil treatment. When applied on land in the coastal zone, this alkalinity likely influences neighboring bodies of water and may foster carbon dioxide removal and mitigate local ocean acidification. This project

An opportunity to study Ocean Alkalinity Enhancement, carbon dioxide removal, and ecosystem impacts through coastal liming Read More »

Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action