Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Monitoring & Modeling

Development of Ocean Acidification “pHyter” – Plankton Monitoring Tools & Curriculum

NOAA’s National Marine Sanctuaries of the West Coast Region (Olympic Coast, Greater Farallones, Cordell Bank, Monterey Bay and Channel Islands) will partner with Flathead Valley Community College, NOAA’s National Centers for Coastal Ocean Science (NCCOS) and NOAA’s Northwest Fisheries Science Center (NFSC), to increase accessibility and understanding of tools and protocol for ocean acidification monitoring through citizen science and education programs.

Humans and the ocean are inextricably interconnected, with all humans relying on ocean ecosystem outputs such as oxygen, water and food.  Currently, ocean ecosystems are threatened by multiple global change stressors, including ocean acidification (OA).  The development of OA monitoring tools and education curriculum will be instrumental in providing the public with a better understanding of the process of OA and impacts of a more acidic environment to valuable ocean ecosystems.

NOAA’s West Coast Region (WCR) sanctuaries will work with external partner Dr. David Long, of Flathead Valley Community College, to pilot a field-based pH-measuring instrument called ”pHyter” with WCR sanctuaries’ OA education and outreach programs, including citizen science, teacher workshops and student field investigations. Dr. Long  and his students recently developed pHyter: a hand-held chemical indicator-based spectrophotometric pH- measuring device.  OAP funds will support the expansion of pHyter instrument capabilities to permit iPhone and android apps to interface and upload to the international GLOBE Program GIS database, increasing accessibility of pH data.

Development of Ocean Acidification “pHyter” – Plankton Monitoring Tools & Curriculum Read More »

Research shows ocean acidification is spreading rapidly in the Arctic

NOAA Oceanic and Atmospheric Research  Ocean acidification is spreading rapidly in the western Arctic Ocean in both area and depth, potentially affecting shellfish, other marine species in the food web, and communities that depend on these resources, according to new research published in Nature Climate Change by NOAA, Chinese marine scientists and other partners.

Research shows ocean acidification is spreading rapidly in the Arctic Read More »

MIT Sea Grant Announces Three Newly Funded Projects Studying Ocean Acidification

MIT Sea Grant  MIT Sea Grant has selected three research projects for funding from our annual request for proposals. The projects focus on developing new ocean acidification sensor technology and using modeling techniques to consolidate historical data to inform future coastal ocean acidification monitoring.

MIT Sea Grant Announces Three Newly Funded Projects Studying Ocean Acidification Read More »

New Tool Helps Oyster Growers Prepare for Changing Ocean Chemistry

For Bill Mook, coastal acidification is one thing his oyster hatchery cannot afford to ignore. Mook Sea Farm depends on seawater from the Gulf of Maine pumped into a Quonset hut-style building where tiny oysters are grown in tanks. Mook sells these tiny oysters to other oyster farmers or transfers them to his oyster farm on the Damariscotta River where they grow large enough to sell to restaurants and markets on the East Coast.

New Tool Helps Oyster Growers Prepare for Changing Ocean Chemistry Read More »

Tracking Ocean Alkalinity using New Carbon Measurement Technologies (TAACT)

This project will expand the quantity and quality of ocean acidification (OA) monitoring across Northeastern U.S. coastal waters. The new OA data and incorporation of the world’s first commercial total alkalinity (TA) sensor into our regional observing system (NERACOOS) are designed to supply needed baseline information in support of a healthy and sustainable shellfish industry, and to aid in assessments and projections for wild fisheries. In working with partners to develop this proposal, clear concerns were brought forward regarding the potential impacts of increasing ocean acidity that extend from nearshore hatcheries and aquaculture to broader Gulf of Maine finfish and shellfish industries and their management. Stakeholder input and needs shaped the project scope such that both nearshore and offshore users will be served by TA sensor deployments on partner platforms, including time series data collection at an oyster aquaculture site, on the NOAA Ship of Opportunity AX-2 line, and on federal and State of Maine regional fish trawl surveys. In all, five different deployment platforms will be used to enhance ocean acidification monitoring within the Northeast Coastal Acidification Network (NE-CAN) with significant improvement in temporal and spatial coverage.
 Adding the all-new TA measurement capability to the regional observation network will provide more accurate, certain, and reliable OA monitoring, and an important project objective is to demonstrate and relay this information to regional partners. Data products to be developed from the multi-year measurements include nearshore and offshore baseline OA seasonal time series as well as threshold indices tied to acidification impacts on larval production at the Mook Sea Farm oyster hatchery. An outreach and technical supervision component will include the transfer of carbonate system observing technologies to our partners and to the broader fishing industry, resource management, and science communities. NERACOOS will provide data management and communication (DMAC) services and work towards implementing these technological advances into the IOOS network.

Tracking Ocean Alkalinity using New Carbon Measurement Technologies (TAACT) Read More »

Turning the headlights on ‘high’: Improving an ocean acidification observation system in support of Pacific coast shellfish growers

Working across four IOOS Regional Associations in partnership with the shellfish industry and other groups affected by ocean acidification (OA), our proposal is divided into four tasks that continue the foundational aspects established to date and expand both technical capacity and the development of new technology with respect to OA observing needs for shellfish growers and other related impacted and potentially vulnerable U.S. industries, governments (tribal, state, local) and other stakeholders. Our proposed work includes development of observing technology, expert oversight intelligence, data dissemination, and outreach and will be executed by a team that includes a sensor technology industry and academic and government scientists. We will: 1) Develop new lower cost and higher accuracy sensor technology for OA monitoring and expand them to new sites; 2) Utilize regional partnerships of users and local experts to implement and provide Quality Assurance/Quality Control (QA/QC) tests of the new OA sensors; 3) Establish data handling and dissemination mechanisms that provide both user-friendly and standards-based web service access that are exportable from the Pacific Coast module to the entirety of U.S. Integrated Ocean Observing System (IOOS); and 4) Provide education and outreach services to stakeholders concerned about and potentially impacted by OA.

Turning the headlights on ‘high’: Improving an ocean acidification observation system in support of Pacific coast shellfish growers Read More »

Interactions between ocean acidification and eutrophication in estuaries: Modeling opportunities and limitations for shellfish restoration

The objective of this project is to make significant strides in bridging the gap between scientific knowledge and current management needs by integrating existing biogeochemical model frameworks, field measurements, and experimental work toward the goals of (1) delineating atmospheric and eutrophication drivers of Chesapeake Bay acidification and improve our understanding of estuarine carbonate chemistry, (2) developing a spatially explicit framework to identify shellfish restoration areas most and least prone to acidification impacts, and (3) better understanding feedbacks associated with future environmental conditions and shellfish restoration goals estuary-wide and within a model tributary. This effort includes (1) a field campaign to make the first comprehensive study of the spatial and temporal variability in the carbonate system in Chesapeake Bay, (2) experiments to quantify both carbonate and nutrient exchange between intact oyster reefs and the surrounding water while measuring response of these fluxes to reef structure and acidification, and (3) an advancement in numerical modeling tools to simultaneously simulate the dynamics of eutrophication, hypoxia, carbonate chemistry, and oyster reef growth and interaction with the water-column under present and future conditions.

Interactions between ocean acidification and eutrophication in estuaries: Modeling opportunities and limitations for shellfish restoration Read More »

Integrated Modeling of Ocean Acidification and Hypoxia to Support Ecosystem Prediction and Environmental Management in the California Current System

The California Current System (CCS) is one of the most biologically productive regions of the world ocean, but seasonal upwelling of low oxygen and low-pH waters makes it particularly vulnerable to even small additional reductions in O2 and/or pH, which have both been observed in recent decades. Three prominent coastal phenomena have been implicated in precisely these changes: 1) large scale acidification and deoxygenation of the ocean associated with climate warming, 2) natural climate variability, and 3) anthropogenic pollution of coastal waters, especially from nutrient discharge and deposition.  The relative importance of these drivers has not been systematically evaluated, and yet is critical information in any cost-effective strategy to manage coastal resources at local scales.  Disentangling the magnitude and interaction of these different ecosystem stresses requites an integrated systems modeling approach that is carefully validated against available datasets.
The goals of this project are three-fold: 1) develop an ocean hypoxia and acidifcation (OHA) model of the CCS (Baja California to British Columbia), comprising the circulation, biogeochemical cycles, and lower-trophic ecosystem of the CCS, with regional downscaling in the Southern California Bight, Central Coast, and the Oregon Coast; 2) use the model to understand the relative contributions of natural climate variability, anthropogenically induced climate change, and anthropogenic inputs on the status and trends of OHA in the CCS; and 3) transmit these findings to coastal zone mangers and help them explore the implications for marine resource management and pollution control.

Integrated Modeling of Ocean Acidification and Hypoxia to Support Ecosystem Prediction and Environmental Management in the California Current System Read More »

Carbon Dioxide Information Analysis Center (CDIAC-Oceans) ceases operation, all activities to transition to NOAA

Data management activities for the ocean component of the Carbon Dioxide Information Analysis Center (CDIAC-Oceans) at Oak Ridge National Laboratory (ORNL) have recently stopped and this letter provides information on steps being taken to minimize the impact of this stoppage on the oceanographic community. Data, numerical data packages (NDPs), data synthesis product pages, and utilities

Carbon Dioxide Information Analysis Center (CDIAC-Oceans) ceases operation, all activities to transition to NOAA Read More »

Time series assessments of OA and Carbon system properties in the western Gulf of Maine

In terms of the commercial value of its shellfish and its importance as a finfish breeding ground, the western Gulf of Maine (GOM) is certainly one of the most valuable ecosystems in the United States. Because over 80% of organisms landed in the GOM must utilize calcium carbonate during certain critical life stages, the effects of ocean acidification (OA) on ecosystems are a topic of increasing regional concern. This notion was accentuated by recent demands from marine industry stakeholders and the State Legislature in Maine who convened an Ocean Acidification Commission to study and mitigate the effects of OA. By nature of its cool temperatures and copious freshwater subsidies from both remote and local origins, the western GOM may be particularly sensitive to future acidification stresses (Salisbury et al, 2008; Wang et al, 2013). With the goals of 1) providing data critical for climate studies and local decision support, and 2) understanding of regional processes affecting acidification, we propose to maintain data collection efforts at and proximal to UNH-PMEL acidification buoy. We will deploy, maintain and recover the buoy and its suite of instruments that provide quality oceanographic and carbonate system data. We will supplement these activities with seasonal cruises that map surface regional pCO2 and several surface variables supplemented with hydrographic and optical profiles at six stations along the UNH Wilkinson Basin Line (aka Portsmouth Line), which runs orthogonal to the coast. This in turn will be supplemented with ancillary bottle sampling and all will be used in research aimed at understanding processes controlling the dynamically evolving carbonate system in the western GOM.

Time series assessments of OA and Carbon system properties in the western Gulf of Maine Read More »

Forecasts for Alaska Fisheries

Crab pots and fishing nets in Alaska's Dutch Harbor
Image credit: Michael Theberge

Understanding seasonal changes in ocean acidification in Alaskan waters and the potential impacts to the multi-billion-dollar fishery sector is a main priority. Through work funded by NOAA’s Ocean Acidification Program, the Pacific Marine Environmental Laboratory developed a model capable of depicting past ocean chemistry conditions for the Bering Sea and is now testing the ability of this model to forecast future conditions. This model is being used to develop an ocean acidification indicator provided to fisheries managers in the annual NOAA Eastern Bering Sea Ecosystem Status Report.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

Closeup of oysters cupped in someone's hands

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action