Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects

Effects of elevated pCO2 and temperature on reef biodiversity and ecosystem functioning using Autonomous Reef Monitoring Structures and hyperspectral technology

The goal of this project is to improve our understanding of the effects of ocean acidification and warming on coral reef communities by examining responses of entire suites of reef organisms recruiting to Autonomous Reef Monitoring Structures (ARMS) in benthic mesocosms. We will perform a fully factorial experiment that consists of four treatments of low and high temperature and pCO₂ levels. ARMS are the leading long-term monitoring tool to measure biodiversity on reef systems and are integrated into the National Coral Reef Monitoring Program (NCRMP) Class II and Class III climate stations dedicated to monitor and access the physical, chemical and biological impacts associated with climate change over time. We propose to examine the effects of elevated temperature and pCO₂ on recruitment, biomass, biodiversity, and community structure over a multiannual time frame to increase our understanding of how biodiversity, ecosystem function, and their relationship will be impacted under future climate scenarios. 

Effects of elevated pCO2 and temperature on reef biodiversity and ecosystem functioning using Autonomous Reef Monitoring Structures and hyperspectral technology Read More »

NCRMP – OA Enterprise

NCRMP‐OA is a Joint Enterprise designed to address the Tier 1 Ocean Acidification (OA) components of the larger NCRMP strategic framework at Class 0, II, and III stations. Field work and laboratory analyses for the Atlantic/Caribbean region (Florida, Puerto Rico, U.S. Virgin Islands [USVI], and Flower Garden Banks [FGB]) are executed by the OAR Atlantic Oceanographic and Meteorological Laboratory (AOML) and by the University of Puerto Rico (UPR) Caribbean Coastal Ocean Observing System (CariCOOS). Field work in the Pacific region (Main Hawaiian Islands [MHI], Northwestern Hawaiian Islands [NWHI], Guam, Commonwealth of the Northern Mariana Islands [CNMI], American Sāmoa, and the Pacific Remote Island Areas [PRIA]) is executed by the NMFS Pacific Islands Fisheries Science Center [PIFSC] Coral Reef Ecosystem Division (CRED); laboratory analyses for the Pacific region are executed by the OAR Pacific Marine Environmental Laboratory (PMEL). NCRMP‐OA Teams closely coordinate with other NCRMP elements (benthic, fish, water temperature, satellite, and socioeconomic teams), including PMEL’s NOAA Ocean Acidification Observing Network (NOA‐ON), other NOAA offices, Federal, State, and Territory agencies, and academic partners, in both the Atlantic and Pacific regions.
 
This project monitors changes to coral reef carbonate chemistry over time, at US affiliated coral reef sites, through quantifying key chemical parameters that are expected to be impacted by ocean acidification. This effort addresses OAP programmatic themes 1 and 5 by maintaining the coral reef portion of the OA monitoring network and developing a procedure for data synthesis, assimilation, and distribution. Incorporating an interdisciplinary approach, this project will collect, process, analyze, and steward dissolved inorganic carbon (DIC) and total alkalinity (TA) water sample data to document seawater carbonate chemistry at Class 0, II, III climate monitoring sites in coral reef areas of the US Atlantic and Pacific regions.

NCRMP – OA Enterprise Read More »

Physiological response of the red tree coral (Primnoa pacifica) to low pH scenarios in the laboratory

Deep-sea corals are widespread throughout Alaska, including the continental shelf and upper slope of the Gulf of Alaska, the Aleutian Islands, the eastern Bering Sea, and extending as far north as the Beaufort Sea. Decreases in oceanic pH and resulting decreases in calcium carbonate saturation state could have profound effects on corals dependent on the extraction of calcium carbonate from seawater for skeletal building. Corals will be affected differently depending on their skeletal composition (aragonite vs. calcite), geographical location, and depth. The aragonite and calcite saturation horizons are already quite shallow in areas of the North Pacific Ocean and are predicted to become shallower in the near future. The skeletal composition is known for only a few Alaskan coral species and may be composed of aragonite, calcite, high-magnesium calcite, or amorphous carbonate hydroxylapatite. Skeletons composed of high magnesium-calcite are the most soluble and consequently corals with high-magnesium calcite skeletons, particularly those residing at depths deeper than the saturation horizon, are most at risk to decreases in oceanic pH. At the completion of this project we will be able to provide a comprehensive risk assessment for all corals in Alaskan waters.

Physiological response of the red tree coral (Primnoa pacifica) to low pH scenarios in the laboratory Read More »

Alaska Ocean Acidification Research: Autonomous Observations of Ocean Acidification in Alaska Coastal Seas

This OAP project represents the first contribution of OAP to sustained coastal Alaska OA monitoring through three years (2015-2017) of maintenance of two previously established OA mooring sites located in critical fishing areas. In FY2015, It also supported a 19 day OA survey cruise along the continental shelf of the Gulf of Alaska in summer of 2015, designed to fill observing gaps that have made it difficult to quantify the extent of OA events. This support has been critical for continuing OA research in Alaska, as the initial infrastructure funding was not sufficient or intended for long-term operation. 
These OAP-sponsored monitoring and observing activities support a number of cross-cutting research efforts. Firstly, the data itself will provide new insights into the seasonal progression of OA events caused by the progressive accumulation of anthropogenic CO2 into the region's coastal seas. The mooring and cruise data can also be used as an early warning system for stakeholders around the state, as well as to provide information for other types of OA research. Other projects within the OAP Alaska Enterprise focus on laboratory based evaluation of the impact of OA on commercially and ecologically important Alaskan species, especially during the vulnerable larval and juvenile life stages. This environmental monitoring informs those studies by describing the intensity, duration, and extent of OA events and providing a baseline for projecting future conditions. Finally, this observational data is used to validate new OA models that are currently being developed for the Gulf of Alaska and Bering Sea, and are applied in bio-economic models of crab and pollock abundance forecasts (e.g., Punt et al., 2014; Mathis et al., 2014).

Alaska Ocean Acidification Research: Autonomous Observations of Ocean Acidification in Alaska Coastal Seas Read More »

Effects of OA on Alaskan gadids: sensitivity to variation in prey quality and behavioural response

To date many studies of the effects of ocean acidification on fishes have suggested that fish are somewhat resilient to effects on factors such as growth and survival. However, these experiments have generally not included potential interactive stressors which may increase the sensitivity to acidification stress. Further, experiments on some species have demonstrated the OA stress has significant potential to disrupt sensory and behavioral systems in fishes which could compromise survival in natural settings. In this project we will focus on examining the potential for behavioral disruptions due to OA and the interactive stresses of OA and nutritional state on critical Alaskan groundfishes.

Effects of OA on Alaskan gadids: sensitivity to variation in prey quality and behavioural response Read More »

Forecasting the effects of OA on Alaska crabs and pollock abundance

The aim of this project was to forecast effects of ocean acidification on the commercially important Alaska crab stocks including the Bristol Bay red king crab (BBRKC) fishery, which is part of a modern fisheries management program, the Bering Sea and Aleutian Islands (BSAI) crab rationalization program. To investigate the biological and economic impacts of OA, a linked bioeconomic model was developed that a) integrates predictions regarding trends over time in ocean pH, b) separates life-history stages for growth and mortality of juveniles and adults, and c) includes fishery impacts by analyzing catch and effort in both biological and economic terms. By coupling a pre-recruitment component with post-recruitment dynamics, the BBRKC bioeconomic model incorporates effects of OA on vulnerable juvenile crabs in combination with effects of fishing on the BBRKC population as a whole. Many types of projections under management strategies can be made using linked bioeconomic models.

Forecasting the effects of OA on Alaska crabs and pollock abundance Read More »

Physiological response of commercially important crab species to predicted increases in carbon dioxide

In 2010 and 2011, Alaska Fisheries Science Center (AFSC) scientists at the Kodiak Laboratory in Alaska tested the effects of lower pH due to increased carbon dioxide (CO2) on the survival, condition, and growth of red king crab (Paralithodes camtschaticus). Commercially important shellfish are a priority for AFSC research related to ocean acidification because of their economic value and because calcifying species are likely to suffer direct effects due to increased acidity (and a decrease in calcium carbonate saturation state) of our oceans.
The multi-year project objectives are to test the effects of CO2 enrichment (which leads to decreasing pH and lower saturation state) across a range of commercially important crab species and life stages (embryo, larvae, juveniles, and adults). The response variables currently measured include mortality, condition, growth, and calcification of the shell.

Physiological response of commercially important crab species to predicted increases in carbon dioxide Read More »

Multi-Scale Prediction of California Current Carbonate System Dynamics

The California Current is a dynamic eastern boundary system that spans the Northeast Pacific from Canada to Baja California, Mexico. Upwelling of cold, nutrient rich water drives multi trophic level productivity throughout much of the domain, but also results in naturally acidic on-shelf waters on regional scales. In addition, anthropogenic CO2 on basin to global scales, and local inputs by eutrophication, fresh water inputs, and local respiration or carbon assimilation result in multiscale and context-specific perturbations to the carbonate system. Thus, to understand, manage, or mitigate the effect of ocean acidification on ocean ecosystems, we need to quantify a suite of carbonate system parameters along the Pacific Coast in a mechanistic, spatially explicit, and temporally dynamic fashion.
We propose to embed an improved semi-analytical carbonate-chemistry prediction model within a dynamic classification of pelagic seascapes derived from satellite remotely sensed variables, including, but not limited to, phytoplankton standing stock (chl-a), SST, and wind stress. We will produce synoptic time series and nowcasts of surface TCO2, TALK, pH and Ω that will facilitate regional comparisons of interannual trends in OA parameters. We will include metrics of model and spatiotemporal uncertainty to better inform management decisions. These maps will be validated with the wealth of multi-parameter OA data generated from recent NOAA-supported field-observational efforts, from coastal moorings, West-coast OA cruises, and shore-based Burke-o-Lators. Statistical analyses will quantify spatially explicit trends across OA parameters, and local deviations from seascape-based predictions will disentangle basin-scale oceanic vs. local drivers of the carbonate system. Maps will be served in near real time on IOOS data portals. Time series and maps will inform marine ecosystem management and provide metrics of ocean health for National Marine Sanctuary condition reports.

Multi-Scale Prediction of California Current Carbonate System Dynamics Read More »

Satellite view of the Mississippi River plume in the Gulf of America. You can see sediment discharging into the Gulf. Credit: NASA

Time series of ocean acidification and carbon system properties in the northern Gulf

This project will provide time-series observations of coastal ocean pH and carbon system properties, along with other variables that affect carbon transformations, in the northern Gulf of Mexico in support of goals elucidated in the NOAA Ocean and Great Lakes Acidification Research Implementation Plan. This project most directly addresses Theme 1: Develop the monitoring capacity to quantify and track ocean acidification in open-ocean, coastal, and Great Lake systems, but also addresses the educational objectives of Theme 6. USM will maintain a 3- m discus buoy in the northern Gulf of Mexico with a PMEL MAPCO2 system that includes a CTD, dissolved oxygen, and pH sensors. Meteorological sensors on the buoy will be utilized for computing air-sea fluxes of CO2. Water samples and continuous vertical profiles will be taken at the buoy site during quarterly cruises. Water samples will be analyzed for DIC, TA, pH, dO, S, NUTS and chlorophyll a. Analyzed water samples and profile data will be submitted to NODC through standard NOAA OAP submission spreadsheets containing both data and associated metadata.
While this work is focused on the Gulf of Mexico additional time-series sites in the South Atlantic Bight and Gulf of Maine can provide a comparison over a wide range of coastal and latitudinal regimes. The northern Gulf of Mexico, Florida and South Atlantic Bight regions are all commonly influenced by one contiguous western boundary current system, which originates with the Loop Current in the Gulf of Mexico and then becomes the Gulf Stream along the southeastern U.S. continental shelf. The Gulf of Mexico observations will be compared with the other western boundary current influenced site in the South Atlantic Bight maintained by the University of Georgia (UGA) and the high latitude site in the Gulf of Maine maintained by the University of New Hampshire (UNH). 

Time series of ocean acidification and carbon system properties in the northern Gulf Read More »

High-resolution ocean-biogeochemistry modeling for the East and Gulf coasts of the U.S.

Analysis of the data collected during the first (2007) and the second (2012) Gulf of Mexico and East Coast Carbon (GOMECC) cruises showed measurable temporal pH and aragonite saturation state (ΩAr) changes along the eight major transects. However, it is challenging to determine how much of this temporal change between the two cruises is due to ocean acidification and how much is due to variability on seasonal to interannual scales. Indeed, the expected 2% average decrease in ΩAr due to increasing atmospheric CO2 levels over the 5-year period was largely overshadowed by local and regional variability from changes in ocean circulation, remineralization/respiration and riverine inputs (Wanninkhof et al., 2015). Therefore, in order to provide useful products for the ocean acidification (OA) research community and resource managers, it is important to filter out seasonal cycles and other variability from the multi-annual trend. Here, we propose to use a high-resolution regional ocean-biogeochemistry model simulation for the period of 1979 – present day (real-time run) to fill the temporal gap between the 1st and 2nd GOMECC cruise data. In addition we will fine-tune and validate the model by using extensive surface water pCO2 observations from the ships of opportunity in the coastal region (SOOP-OA), and using the carbon observations from the East Coast Ocean Acidification Cruises (ECOA-1) and OAP mooring stations and from remotely sensed data. Then, we will use the real-time model run to estimate the 5-year trends (2012 – 2007) of OA and the carbon and biogeochemical variables along the East and Gulf coasts of the U.S. We will also examine the future OA variability in the East and Gulf coasts of the U.S. by downscaling the future climate projections under different emission scenarios developed for the IPCC-AR5. Based on the results obtained from the proposed model simulations, we will contribute to an observational strategy suitable for elucidating multi-annual trend of carbon and biogeochemical variables along the East and Gulf coasts of the U.S.

High-resolution ocean-biogeochemistry modeling for the East and Gulf coasts of the U.S. Read More »

Forecasts for Alaska Fisheries

Crab pots and fishing nets in Alaska's Dutch Harbor
Image credit: Michael Theberge

Understanding seasonal changes in ocean acidification in Alaskan waters and the potential impacts to the multi-billion-dollar fishery sector is a main priority. Through work funded by NOAA’s Ocean Acidification Program, the Pacific Marine Environmental Laboratory developed a model capable of depicting past ocean chemistry conditions for the Bering Sea and is now testing the ability of this model to forecast future conditions. This model is being used to develop an ocean acidification indicator provided to fisheries managers in the annual NOAA Eastern Bering Sea Ecosystem Status Report.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

Closeup of oysters cupped in someone's hands

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action