Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOAA’s Ocean Acidification Program Research Region

Region: Alaska & Arctic

Related Posts

See news related to this Research Region

Carbon cycling in the North American coastal ocean: a synthesis

A quantification of carbon fluxes in the coastal ocean and across its boundaries with the atmosphere, land, and the open ocean is important for assessing the current state and projecting future trends in ocean carbon uptake and coastal ocean acidification, but this is currently a missing component of global carbon budgeting. This synthesis reviews recent

Read More >

The effects of <em>in-vitro</em> pH decrease on the gametogenesis of the red tree coral, <em>Primnoa pacifica</em>

Primnoa pacifica is the most ecologically important coral species in the North Pacific Ocean and provides important habitat for commercially important fish and invertebrates. Ocean acidification (OA) is more rapidly increasing in high-latitude seas because anthropogenic CO2 uptake is greater in these regions. This is due to the solubility of CO2 in cold water and the reduced buffering

Read More >

An Enhanced Ocean Acidification Observing Network: From People to Technology to Data Synthesis and Information Exchange

A successful integrated ocean acidification (OA) observing network must include (1) scientists and technicians from a range of disciplines from physics to chemistry to biology to technology development; (2) government, private, and intergovernmental support; (3) regional cohorts working together on regionally specific issues; (4) publicly accessible data from the open ocean to coastal to estuarine

Read More >

Effects of ocean acidification on the respiration and feeding of juvenile red and blue king crabs (<Em>Paralithodes camtschaticus</em> and <em>P. platypus</em>)

Ocean acidification is a decrease in pH resulting from dissolution of anthropogenic CO2 in the oceans that has physiological effects on many marine organisms. Juvenile red and blue king crabs (Paralithodes camtschaticus and P. platypus) exhibit both increased mortality and decreased growth in acidified waters. In this study, we determined how ocean acidification affects oxygen consumption, feeding rates,

Read More >

Building the Knowledge-to-Action Pipeline in North America: Connecting Ocean Acidification Research and Actionable Decision Support

Ocean acidification (OA) describes the progressive decrease in the pH of seawater and other cascading chemical changes resulting from oceanic uptake of atmospheric carbon. These changes can have important implications for marine ecosystems, creating risk for commercial industries, subsistence communities, cultural practices, and recreation. Characterizing the extent of acidification and predicting the ramifications for marine

Read More >

Time of Emergence of Surface Ocean Carbon Dioxide Trends in the North American Coastal Margins in Support of Ocean Acidification Observing System Design

Time of Emergence (ToE) is the time when a signal emerges from the noise of natural variability. Commonly used in climate science for the detection of anthropogenic forcing, this concept has recently been applied to geochemical variables, to assess the emerging times of anthropogenic ocean acidification (OA), mostly in the open ocean using global climate

Read More >

Elevated CO<sub>2</sub> alters behavior, growth, and lipid composition of Pacific cod larvae

High-latitude seas, which support a number of commercially important fisheries, are predicted to be most immediately impacted by ongoing ocean acidification (OA). Elevated CO2 levels have been shown to induce a range of impacts on the physiology and behavior of marine fish larvae. However, these responses have yet to be characterized for most fishery species, including Pacific cod (Gadus

Read More >

Controls on surface water carbonate chemistry along North American ocean margins

Syntheses of carbonate chemistry spatial patterns are important for predicting ocean acidification impacts, but are lacking in coastal oceans. Here, we show that along the North American Atlantic and Gulf coasts the meridional distributions of dissolved inorganic carbon (DIC) and carbonate mineral saturation state (Ω) are controlled by partial equilibrium with the atmosphere resulting in

Read More >

Subsurface automated samplers (SAS) for ocean acidification research

Ocean acidification (OA) is the process whereby anthropogenic carbon dioxide is absorbed into seawater, resulting in altered carbonate chemistry and a decline in pH. OA will negatively impact numerous marine organisms, altering the structure and function of entire ecosystems. The progression of OA, while faster than has occurred in recent geological history, has been subtle

Read More >

Related Projects

See our funded projects for this Focus Area

NOAA ship in background during the West Coast Ocean Acidification research cruise with a mooring measuring ocean chemistry in the foreground. Credit: NOAA
This project specifically investigates how the observing network is contributing to forecasting models using these complex tools to estimate ocean acidification conditions throughout the central California Current System...
Map of SOCAT (v1.5) surface fCO2 values released on September 14, 2011. Credit: NOAA PMEL
This work will assess how we can optimize observing resources from the global fleet to support improved, efficient, and cost-effective monitoring of the ocean carbon sink and minimize uncertainty. Researchers..
A glider equipped with sensors measuring ocean conditions and ocean chemistry is deployed off a ship. Credit: NOAA PMEL
This project delivers products and an assessment of observing with the glider network for the California Current Large Marine Ecosystem...
Lake Superior as seen from space in fall. Orange and red colors are from fall foliage. Credit: NOAA GLERL CoastWatch node
The project increases new monitoring and modeling capacity in the Great Lakes to assess the extent of acidification or potential future acidification...
Calm sea with mountains on horizon and expansive sky in Ketchikan, Alaska. Credit: Phil Price, Flickr
This Alaska Sea Grant project increases ocean acidification monitoring capacity and assess vulnerability of Alaskan Tribes to ocean acidification...
Spruce Island in the Kodiak region of Alaska. Bull kelp at water's surface with island in the background. Ocean acidification monitoring in this region helps prepare Kodiak Tribes for the impacts of ocean change. Credit: NOAA
This work will identify specific ocean acidification monitoring and support needs by Kodiak Tribes,. Additionally, it supports the career development of an Alaska Sea Grant fellow and increase capacity in..

Related Publications

See publications produced by our funded projects for this Focus Area

Citation: Fennel, K., Alin, S., Barbero, L., Evans, W., Bourgeois, T., Cooley, S., Dunne, J., Feely, R. A., Hernandez-Ayon, J. M., Hu, X., Lohrenz, S., Muller-Karger, F., Najjar, R., Robbins, L., Shadwick, E., Siedlecki, S., Steiner, N., Sutton, A., Turk, D., Vlahos, P., and Wang, Z. A.: Carbon cycling in the North American coastal ocean: a synthesis, Biogeosciences, 16, 1281–1304, https://doi.org/10.5194/bg-16-1281-2019, 2019.
Citation: Engström-Öst, J., Glippa, O., Feely, R.A. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci Rep 9, 4748 (2019). https://doi.org/10.1038/s41598-019-41213-1
Citation: Carter, B. R., Williams, N. L., Evans, W., Fassbender, A. J., Barbero, L., Hauri, C., et al. (2019). Time of detection as a metric for prioritizing between climate observation quality, frequency, and duration. Geophysical Research Letters, 46, 3853–3861. https://doi.org/10.1029/2018GL080773
Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action