Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOAA’s Ocean Acidification Program Research Region

Region: Southeast Atlantic & Gulf of Mexico

Related Posts

See news related to this Research Region

Ocean carbonate system computation for anoxic waters using an updated CO2SYS program

In anoxic/hypoxic waters, the presence of hydrogen sulfide (H2S) and ammonia (NH3) influences results of the computation of parameters in the ocean carbonate system. To evaluate their influences, H2S and NH3 contributions to total alkalinity are added to CO2SYS, which is a most often used publicly available software package that calculates oceanic carbonate parameters. We discuss how these two

Read More >

Spectrophotometric Determination of Carbonate Ion Concentrations: Elimination of Instrument-Dependent Offsets and Calculation of In Situ Saturation States

This work describes an improved algorithm for spectrophotometric determinations of seawater carbonate ion concentrations ([CO32–]spec) derived from observations of ultraviolet absorbance spectra in lead-enriched seawater. Quality-control assessments of [CO32–]spec data obtained on two NOAA research cruises (2012 and 2016) revealed a substantial intercruise difference in average Δ[CO32–] (the difference between a sample’s [CO32–]spec value and the corresponding

Read More >

Time series <em>p</em>CO<sub>2</sub> at a coastal mooring: Internal consistency, seasonal cycles, and interannual variability

Marine carbonate system monitoring programs often consist of multiple observational methods that include underway cruise data, moored autonomous time series, and discrete water bottle samples. Monitored parameters include all, or some of the following: partial pressure of CO2 of the water (pCO2w) and air, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH. Any combination of at least two of

Read More >

Data weighting for tagging data in integrated size-structured models

Increasingly, stock assessments for hard-to-age species such as crabs, prawns, rock lobsters, and abalone are being based on integrated size-structured population dynamics models that are fit to a variety of data sources. These data sources include tagging data to inform growth. Diagnostic statistics and plots have been developed to explore how well integrated population models

Read More >

Taking the metabolic pulse of the world’s coral reefs

Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism

Read More >

Ecological and socioeconomic strategies to sustain Caribbean coral reefs in a high-CO<sub>2</sub> world

The Caribbean and Western Atlantic region hosts one of the world’s most diverse geopolitical regions and a unique marine biota distinct from tropical seas in the Pacific and Indian Oceans. While this region varies in human population density, GDP and wealth, coral reefs, and their associated ecosystem services, are central to people’s livelihoods. Unfortunately, the region’s reefs

Read More >

Global Observational Needs and Resources for Marine Biodiversity

The diversity of life in the sea is critical to the health of ocean ecosystems that support living resources and therefore essential to the economic, nutritional, recreational, and health needs of billions of people. Yet there is evidence that the biodiversity of many marine habitats is being altered in response to a changing climate and

Read More >

Seasonal variability of carbonate chemistry and decadal changes in waters of a marine sanctuary in the Northwestern Gulf of Mexico

We report seasonal water column carbonate chemistry data collected over a three-year period (late 2013 to 2016) at Flower Garden Banks National Marine Sanctuary (FGBNMS) located on the subtropical shelf edge of the northwestern Gulf of Mexico. The FGBNMS hosts the northernmost tropical coral species in the contiguous United States, with over 50% living coral cover.

Read More >

Seasonal patterns in phytoplankton biomass across the northern and deep Gulf of Mexico: a numerical model study

Biogeochemical models that simulate realistic lower-trophic-level dynamics, including the representation of main phytoplankton and zooplankton functional groups, are valuable tools for improving our understanding of natural and anthropogenic disturbances in marine ecosystems. Previous three-dimensional biogeochemical modeling studies in the northern and deep Gulf of Mexico (GoM) have used only one phytoplankton and one zooplankton type.

Read More >

The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico

Inorganic carbon chemistry data from the surface and subsurface waters of the West Coast of North America have been compared with similar data from the northern Gulf of Mexico to demonstrate how future changes in CO2 emissions will affect chemical changes in coastal waters affected by respiration-induced hypoxia ([O2] ≤ ~ 60 µmol kg−1). In surface waters, the percentage change in the carbon parameters

Read More >

Related Projects

See our funded projects for this Focus Area

NOAA ship in background during the West Coast Ocean Acidification research cruise with a mooring measuring ocean chemistry in the foreground. Credit: NOAA
This project specifically investigates how the observing network is contributing to forecasting models using these complex tools to estimate ocean acidification conditions throughout the central California Current System...
Map of SOCAT (v1.5) surface fCO2 values released on September 14, 2011. Credit: NOAA PMEL
This work will assess how we can optimize observing resources from the global fleet to support improved, efficient, and cost-effective monitoring of the ocean carbon sink and minimize uncertainty. Researchers..
A glider equipped with sensors measuring ocean conditions and ocean chemistry is deployed off a ship. Credit: NOAA PMEL
This project delivers products and an assessment of observing with the glider network for the California Current Large Marine Ecosystem...
Lake Superior as seen from space in fall. Orange and red colors are from fall foliage. Credit: NOAA GLERL CoastWatch node
The project increases new monitoring and modeling capacity in the Great Lakes to assess the extent of acidification or potential future acidification...
Calm sea with mountains on horizon and expansive sky in Ketchikan, Alaska. Credit: Phil Price, Flickr
This Alaska Sea Grant project increases ocean acidification monitoring capacity and assess vulnerability of Alaskan Tribes to ocean acidification...
Spruce Island in the Kodiak region of Alaska. Bull kelp at water's surface with island in the background. Ocean acidification monitoring in this region helps prepare Kodiak Tribes for the impacts of ocean change. Credit: NOAA
This work will identify specific ocean acidification monitoring and support needs by Kodiak Tribes,. Additionally, it supports the career development of an Alaska Sea Grant fellow and increase capacity in..

Related Publications

See publications produced by our funded projects for this Focus Area

Citation: Zhang, J.-Z., Baringer, M. O., Fischer, C. J., & V, J. A. H. (2017). An estimate of diapycnal nutrient fluxes to the euphotic zone in the Florida Straits. Scientific reports, 7(1), 16098. https://doi.org/10.1038/s41598-017-15853-0
Citation: Xue, L., Cai, W. J., Sutton, A. J., & Sabine, C. (2017). Sea surface aragonite saturation state variations and control mechanisms at the Gray’s Reef time-series site off Georgia, USA (2006-2007). Marine Chemistry, 195, 27-40. https://doi.org/10.1016/j.marchem.2017.05.009
Citation: Xu, Y.-Y., Pierrot, D., & Cai, W.-J. (2017). Ocean carbonate system computation for anoxic waters using an updated CO2SYS program. Marine Chemistry, 195, 90-93. https://doi.org/10.1016/j.marchem.2017.07.002

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action