Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOAA’s Ocean Acidification Program Research Region

Region: Southeast Atlantic & Gulf of Mexico

Related Posts

See news related to this Research Region

Air-Sea Interaction Spar buoy. Credit: Lt. Elizabeth Crapo, NOAA Corps
Carbon Dioxide Removal

Data requirements for quantifying natural variability and the background ocean carbon sink in mCDR models

Why we care Ocean uptake of carbon has great natural variability that accompanies rising atmospheric carbon dioxide. A major challenge for marine carbon dioxide removal will be to quantify its additional carbon removal from the atmosphere. Ocean models can quantify carbon uptake attributed to marine carbon dioxide removal will likely be the basis for carbon

Read More >

Ocean acidification in the Gulf of Mexico: Drivers, impacts, and unknowns

We synthesize the current peer-reviewed literature on Gulf of Mexico (GOM) acidification across the ocean-estuarine continuum and identify critical knowledge, research, and monitoring gaps that limit our current understanding of environmental, ecological, and socioeconomic impacts from acidification.• The GOM remains a relatively understudied region with respect to ocean acidification (OA), particularly with respect to regionally important organism and ecosystem responses.• Within the GOM,

Read More >
biological reponse

Evaluating impacts of acidification on biological processes in the Gulf of Mexico

Evaluation of OA impacts to plankton and fish distributions in the Gulf of Mexico during GOMECC-4 with a focus on HAB-interactions
Why we care
Ocean change in the Gulf of Mexico, including acidification and eutrophication, can impact biodiversity and the flow of energy through ecosystems from microscopic phytoplankton to higher trophic levels like

Read More >
Collecting environmental DNA helps scientists make new discoveries about ocean ecosystems. Image courtesy of ThayerMahan, Inc., Kraken Robotics, and the NOAA Office of Ocean Exploration and Research
Coastal Acidification

Understanding biodiversity in the Gulf of Mexico using eDNA

Assessing ecosystem responses of Gulf of Mexico coastal communities to ocean acidification using environmental DNA
Why we care
Recent efforts to monitor ocean acidification in the Gulf of Mexico via the Gulf of Mexico Ecosystems and Carbon Cycle (GOMECC) cruises have revealed spatial differences in ocean acidification. While we know that ocean

Read More >

Ocean acidification interactions in the Gulf of Mexico

Ocean Acidification on a Crossroad: Enhanced Respiration, Upwelling, Increasing Atmospheric CO2, and their interactions in the northwestern Gulf of Mexico

Why we care
In the coastal ocean, local drivers such as nutrient input and physical oceanographic changes impact the magnitude of short-term variations and long-term trends in ocean acidification. The Gulf of

Read More >

PMEL Ocean Acidification Mooring Test-beds and Sensor Development: Evaluating and Expanding New Carbon Technologies to Subsurface Habitats

Developing and expanding sensors to improve ocean acidification monitoring



Why we care:
Enhancing our ability to measure water chemistry with the best technology available is essential to understand and track where and how ocean acidification changes in marine ecosystems. The NOAA Pacific Marine Environmental Laboratory (PMEL) Carbon Group continuously augments,
Read More >

A geographic weighted regression approach for improved total alkalinity estimates in the Northern Gulf of Mexico

Total alkalinity (TA) is one of the important parameters to show the intensity of seawater buffer against ocean acidification. TA dynamics in the northern Gulf of Mexico (N-GoM) is significantly affected by the Mississippi River. An empirical TA algorithm is offered here which accounts for the local effects of coastal processes. In situ data collected during numerous research

Read More >

Understanding upper water mass dynamics in the Gulf of Mexico by linking physical and biogeochemical features

In the Gulf of Mexico (GoM), the upper 300 m of the water column contains a mixture of water types derived from water masses from the North Atlantic and the Caribbean Sea, namely Caribbean Surface Water (CSW), Subtropical Underwater (SUW), Gulf Common Water (GCW), and Tropical Atlantic Central Water (TACW). These are mainly altered by mesoscale processes and

Read More >

Related Projects

See our funded projects for this Focus Area

Calm sea with mountains on horizon and expansive sky in Ketchikan, Alaska. Credit: Phil Price, Flickr

Why we care:Alaskan Native communities rely on healthy marine ecosystems for work, sustenance and their way of life. Ocean acidification has documented impacts to marine life and these communities. An..

Spruce Island in the Kodiak region of Alaska. Bull kelp at water's surface with island in the background. Ocean acidification monitoring in this region helps prepare Kodiak Tribes for the impacts of ocean change. Credit: NOAA

Why we care:Alaskan Native communities rely on healthy marine ecosystems for work, sustenance and their way of life. Ocean acidification has documented impacts to marine life and these communities. Community..

Fisherman pulling up sugar kelp. Seaweed cultivation may be one avenue for marine carbon dioxide removal and mitigating ocean acidification. Credit: GreenWave/Ron Gautreau.

Award amount: $1,451,575Duration: 3 yearsFunding agency: NOAA Ocean Acidification Program (OAP), National Oceanographic Partnership Program (NOPP) Why we care Growing seaweed in the ocean could be one way to alleviate some..

Plankton bloom seen from space. Credit: NASA

Why we care Iron is a critical limiting nutrient for phytoplankton in the ocean. Iron fertilization adds this limiting nutrient to promote phytoplankton blooms as a way to take up..

Breaking wave in sunlight. Credit: NOAA Ocean Service

Why we care Ocean alkalinity enhancement has the potential to capture carbon and mitigate ocean acidification. While ocean alkalinity enhancement is a promising approach for removing carbon from the atmosphere,..

Terrestrial liming at golf courses serve as testbeds for this method for carbon capture and mitigating acidification. Credit: Your Golf Travel (Creative Commons)

Why we care Terrestrial liming, or the addition of a basic (alkaline) material like calcium carbonate to crops and lawns is a common agricultural soil treatment. When applied on land..

Related Publications

See publications produced by our funded projects for this Focus Area

Citation: Kearney KA, Bograd SJ, Drenkard E, Gomez FA, Haltuch M, Hermann AJ, Jacox MG, Kaplan IC, Koenigstein S, Luo JY, Masi M, Muhling B, Pozo Buil M and Woodworth-Jefcoats PA (2021) Using Global-Scale Earth System Models for Regional Fisheries Applications. Front. Mar. Sci. 8:622206. doi: 10.3389/fmars.2021.622206
Citation: Lotterhos, K.E., Láruson, Á.J. & Jiang, LQ. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci Rep 11, 15535 (2021). https://doi.org/10.1038/s41598-021-94872-4
Citation: Xue, L., Cai, W.-J., Jiang, L.-Q., & Wei, Q. (2021). Why are surface ocean pH and CaCO3 saturation state often out of phase in spatial patterns and seasonal cycles? Global Biogeochemical Cycles, 35, e2021GB006949. https://doi.org/10.1029/2021GB006949
Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action