Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Post Search

Search
Sort Results
Refine Results
Post Category
Focus Area
Region

February 1st, 2021

The program specialist will be working with NOAA Ocean Acidification Program (OAP) to provide interagency affairs capacity in support of NOAA’s requirements under the Federal Ocean Acidification Research & Monitoring Act (FOARAM Act) and the Coordinated Ocean Observations and Research Act of 2020 Act (ICOOS Act).
Learn more here

Read More >
education & outreach

TRACKING OCEAN ACIDIFICATION IN PUERTO RICO: A VIDEO JOURNEY

Puerto Rico is home to vibrant coral reef ecosystems that support a diversity of marine life and livelihoods. Join Melissa Melendez, University of Hawai’i Manoa and Lisamarie Carrubba, NOAA Fisheries’ Office of Protected Resources, as they share our journey in creating Spanish-language videos (with English subtitles) about ocean acidification, its causes, consequences, research and possible

Read More >
Featured

Scientists, scallop industry team up to study ocean acidification impacts

Guided by input from fishers, a team of scientists will bring together computer modeling and experiments to inform management policies for Northeast scallop fisheries facing the threat of ocean acidification.
Researchers from the University of Connecticut, NOAA’s Northeast Fisheries Science Center (NEFSC), Commercial Fisheries Research Foundation (CFRF), and Rutgers University will work together to

Read More >

LETTERS OF INTENT DUE DECEMBER 15th, 2020

The Ocean Acidification Program and National Sea Grant Office are now accepting letters of intent for projects to bolster understanding of  how acidification and other stressors will impact shellfish aquaculture by seeking applications that establish, continue, and/or expand collaborations between researchers and the shellfish aquaculture industry. Letters of intent are due December 15th, 2020.

Read More >

Land locked to open ocean: Putting a pH sensor in the hands of students?

8.1. The current average pH of the ocean after being reduced significantly from decades of rampant carbon dioxide being pumped into the atmosphere, and ultimately, absorbed by our ocean. But how is pH measured? If a citizen scientist wants to see this for themselves, is it possible? Measuring ocean pH typically requires expensive equipment and

Read More >

Bioeconomic modeling to inform Alaska fisheries management

Fishing Dock in Juneau Alaska
Image credit: Allen Shimada, NOAA NMFS

Bioeconomic models are a multidisciplinary tool that use oceanography, fisheries science and social science to assess socioeconomic impacts. Funded by the Ocean Acidification Program, researchers at the Alaska Fisheries Science Center use a bioeconomic model to study the impacts of ocean acidification on Eastern Bering Sea crab, northern rock sole and Alaska cod. The goal is to predict how ocean acidification will affect abundance yields and income generated by the fisheries. This work informs the potential economic impacts of ocean acidification and future decision making and research planning.

More about this work

Effects of ocean acidification and temperature on Alaskan crabs

Red King Crab
Image credit: David Csepp, NMFS AKFSC ABL

Long-term declines of red king crab in Bristol Bay, Alaska may be partially attributed to ocean acidification conditions. These impacts may be partially responsible for the fishery closures during the 2021–2022 and 2022–2023 seasons. Researchers found that ocean acidification negatively impacts Alaskan crabs generally by changing physiological processes, decreasing growth, increasing death rates and reducing shell thickness. Funded by the Ocean Acidification Program, scientists at the Alaska Fisheries Science Center continue to investigate the responses of early life history stages and study the potential of various Alaska crabs to acclimate to changing conditions. Results will inform models that will use the parameters studied to predict the effects of future ocean acidification on the populations of red king crab in Bristol Bay as well as on the fisheries that depend on them. Fishery managers will better be able to anticipate and manage stocks if changing ocean chemistry affects stock productivity and thus the maximum sustainable yield.

More about this work

Forecasts for Alaska Fisheries

Crab pots and fishing nets in Alaska's Dutch Harbor
Image credit: Michael Theberge

Understanding seasonal changes in ocean acidification in Alaskan waters and the potential impacts to the multi-billion-dollar fishery sector is a main priority. Through work funded by NOAA’s Ocean Acidification Program, the Pacific Marine Environmental Laboratory developed a model capable of depicting past ocean chemistry conditions for the Bering Sea and is now testing the ability of this model to forecast future conditions. This model is being used to develop an ocean acidification indicator provided to fisheries managers in the annual NOAA Eastern Bering Sea Ecosystem Status Report.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

Closeup of oysters cupped in someone's hands

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action