Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOAA’s Ocean Acidification Program Research Region

Region: Global

Related Posts

See news related to this Research Region

The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities

Rising atmospheric carbon dioxide (CO2) levels, from fossil fuel combustion and deforestation, along with agriculture and land-use practices are causing wholesale increases in seawater CO2 and inorganic carbon levels; reductions in pH; and alterations in acid-base chemistry of estuarine, coastal, and surface open-ocean waters. On the basis of laboratory experiments and field studies of naturally elevated

Read More >

Subsurface automated samplers (SAS) for ocean acidification research

Ocean acidification (OA) is the process whereby anthropogenic carbon dioxide is absorbed into seawater, resulting in altered carbonate chemistry and a decline in pH. OA will negatively impact numerous marine organisms, altering the structure and function of entire ecosystems. The progression of OA, while faster than has occurred in recent geological history, has been subtle

Read More >

A vision for FAIR ocean data products

The ocean is mitigating global warming by absorbing large amounts of excess carbon dioxide from human activities. To quantify and monitor the ocean carbon sink, we need a state-of-the-art data resource that makes data submission and retrieval machine-compatible and efficient.

Read More >

Near-future ocean warming and acidification alter foraging behaviour, locomotion, and metabolic rate in a keystone marine mollusc

Environmentally-induced changes in fitness are mediated by direct effects on physiology and behaviour, which are tightly linked. We investigated how predicted ocean warming (OW) and acidification (OA) affect key ecological behaviours (locomotion speed and foraging success) and metabolic rate of a keystone marine mollusc, the sea hare Stylocheilus striatus, a specialist grazer of the toxic cyanobacterium Lyngbya

Read More >

Processes Driving Global Interior Ocean pH Distribution

Ocean acidification evolves on the background of a natural ocean pH gradient that is the result of the interplay between ocean mixing, biological production and remineralization, calcium carbonate cycling, and temperature and pressure changes across the water column. While previous studies have analyzed these processes and their impacts on ocean carbonate chemistry, none have attempted

Read More >

Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean

Seawater elemental composition, namely Mg:Ca and Sr:Ca ratios are widely used in marine sciences. Our new single-laboratory global dataset, combined with past data of seawater Mg:Ca and Sr:Ca ratios, suggests that modern ocean variability is significant across different environments, being similar to the changes during the Neogene Period (20 Ma). Because there is large variability

Read More >

Accounting for risk transitions of ocean ecosystems under climate change: an economic justification for more ambitious policy responses

Despite the ocean’s role in regulating the climate and providing ecosystem services, the importance of the ocean has only recently gained appropriate attention in the context of international climate change policies. This concerns the impacts of climate change on ocean ecosystems and the role of the ocean in climate change mitigation. Since impacts can be

Read More >

Preparation of 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) pHT buffers in synthetic seawater

Buffers of known quality for the calibration of seawater pHT measurements are not widely or commercially available. Although there exist published compositions for the 0.04 mol kg-H2O−1 equimolar buffer 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS)-TRIS · H+ in synthetic seawater, there are no explicit procedures that describe preparing this buffer to achieve a particular pHT with a known uncertainty. Such a procedure is described here

Read More >
Map of SOCAT (v1.5) surface fCO2 values released on September 14, 2011. Credit: NOAA PMEL
Federal Funding

Optimizing Global Observations of Carbon Dioxide in the Surface Ocean Using Machine Learning

This work will assess how we can optimize observing resources from the global fleet to support improved, efficient, and cost-effective monitoring of the ocean carbon sink and minimize uncertainty. Researchers will use machine learning to determine how to best deploy observing assets like buoys, autonomous vehicles, and ships to measure the ocean’s uptake of carbon

Read More >

Data reporting and sharing for ocean alkalinity enhancement research

Effective management of data is essential for successful ocean alkalinity enhancement (OAE) research, as it guarantees the long-term preservation, interoperability, discoverability, and accessibility of data. OAE research generates various types of data, such as discrete bottle measurements, autonomous measurements from surface underway and uncrewed platforms (e.g., moorings, Saildrones, gliders, Argo floats), physiological response studies (e.g.,

Read More >

Related Projects

See our funded projects for this Focus Area

A large coral in American Samoa known as "Big Momma" Credit: NOAA Fisheries
This project provides new ocean acidification education to communities in American Samoa...
Secluded beach with tide pools and algae covered rock formations captured soon after sunrise, Half Moon Bay, California, USA. Credit: Jan Arendtsz (Flickr, CC)
This project provides a hands-on ocean and coastal acidification curriculum to students from coastal communities in Redwood City, California...
California's Humboldt coast as seen from a high vantage near sunset. Fog lingers above the King Range National Conservation Area. Credit: Guest photographer Bob Wick for CA Bureau of Land Management
Broadening Ocean Acidification Teaching and Learning (BOATL) offers teacher professional development and ocean acidification science education to schools and local Tribes...
Haystack Rock on Cannon Beach, Oregon (2024). Credit: Kevin Crosby (Creative Commons)
This project seeks to address gaps in ocean and environmental education and improve outcomes for Oregon’s youth through the Oregon State University’s Science Math Investigative Learning Experiences (SMILE) Program...
North Carolina seen from space from MODIS on NASA's Aqua satellite on June 30, 2022
This project delivers ocean acidification education in rural North Carolina schools...
Eastern oyster (Crassostrea virginica). Credit: NOAA Fisheries
This project creates a research course for high school students focused on career development, ocean acidification science and stewardship...

Related Publications

See publications produced by our funded projects for this Focus Area

Citation: Smith, A. L., Jessyca LaBadie, Aly Busse, Emilie Solomon, Casie Farrell, Daniel M. Holstein, Zuo George Xue, Philip M. Gravinese. (2024). Will Climate Change Alter the Swimming Behavior of Larval Stone Crabs?: A Guided-Inquiry Lesson. Current The Journal of Marine Education, 39(2). https://doi.org/10.5334/cjme.117
Citation: Shamberger, K. E. F., Feely, R. A., Sabine, C. L., Atkinson, M. J., DeCarlo, E. H., Mackenzie, F. T., Drupp, P. S., & Butterfield, D. A. (2011). Calcification and organic production on a Hawaiian coral reef. Marine Chemistry, 127(1-4), 64-75. https://doi.org/10.1016/j.marchem.2011.08.003
Citation: Frölicher, T. L., Joos, F., and Raible, C. C.: Sensitivity of atmospheric CO2 and climate to explosive volcanic eruptions, Biogeosciences, 8, 2317–2339, https://doi.org/10.5194/bg-8-2317-2011, 2011.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action