Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOAA’s Ocean Acidification Program Research Region

Region: Northeast

Related Posts

See news related to this Research Region

Constraining the Oceanic Uptake and Fluxes of Greenhouse Gases by Building an Ocean Network of Certified Stations: The Ocean Component of the Integrated Carbon Observation System, ICOS-Oceans

The European Research Infrastructure Consortium “Integrated Carbon Observation System” (ICOS) aims at delivering high quality greenhouse gas (GHG) observations and derived data products (e.g., regional GHG-flux maps) for constraining the GHG balance on a European level, on a sustained long-term basis. The marine domain (ICOS-Oceans) currently consists of 11 Ship of Opportunity lines (SOOP –

Read More >

Autonomous seawater <em>p</em>CO<sub>2</sub> and pH time series from 40 surface buoys and the emergence of anthropogenic trends

Ship-based time series, some now approaching over 3 decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last 2 decades have led to the expansion of observations at fixed

Read More >

Carbon cycling in the North American coastal ocean: a synthesis

A quantification of carbon fluxes in the coastal ocean and across its boundaries with the atmosphere, land, and the open ocean is important for assessing the current state and projecting future trends in ocean carbon uptake and coastal ocean acidification, but this is currently a missing component of global carbon budgeting. This synthesis reviews recent

Read More >

An Enhanced Ocean Acidification Observing Network: From People to Technology to Data Synthesis and Information Exchange

A successful integrated ocean acidification (OA) observing network must include (1) scientists and technicians from a range of disciplines from physics to chemistry to biology to technology development; (2) government, private, and intergovernmental support; (3) regional cohorts working together on regionally specific issues; (4) publicly accessible data from the open ocean to coastal to estuarine

Read More >

Building the Knowledge-to-Action Pipeline in North America: Connecting Ocean Acidification Research and Actionable Decision Support

Ocean acidification (OA) describes the progressive decrease in the pH of seawater and other cascading chemical changes resulting from oceanic uptake of atmospheric carbon. These changes can have important implications for marine ecosystems, creating risk for commercial industries, subsistence communities, cultural practices, and recreation. Characterizing the extent of acidification and predicting the ramifications for marine

Read More >

Controls on surface water carbonate chemistry along North American ocean margins

Syntheses of carbonate chemistry spatial patterns are important for predicting ocean acidification impacts, but are lacking in coastal oceans. Here, we show that along the North American Atlantic and Gulf coasts the meridional distributions of dissolved inorganic carbon (DIC) and carbonate mineral saturation state (Ω) are controlled by partial equilibrium with the atmosphere resulting in

Read More >

Subsurface automated samplers (SAS) for ocean acidification research

Ocean acidification (OA) is the process whereby anthropogenic carbon dioxide is absorbed into seawater, resulting in altered carbonate chemistry and a decline in pH. OA will negatively impact numerous marine organisms, altering the structure and function of entire ecosystems. The progression of OA, while faster than has occurred in recent geological history, has been subtle

Read More >

Mechanical Resistance in Decapod Claw Denticles: Contribution of Structure and Composition

The decapod crustacean exoskeleton is a multi-layered structure composed of chitin-protein fibers embedded with calcium salts. Decapod claws display tooth-like denticles, which come into direct contact with predators and prey. They are subjected to more regular and intense mechanical stress than other parts of the exoskeleton and therefore must be especially resistant to wear and abrasion. Here,

Read More >

Experimental acidification increases susceptibility of <em>Mercenaria mercenaria</em> to infection by Vibrio species

Ocean acidification alters seawater carbonate chemistry, which can have detrimental impacts for calcifying organisms such as bivalves. This study investigated the physiological cost of resilience to acidification in Mercenaria mercenaria, with a focus on overall immune performance following exposure to Vibrio spp. Larval and juvenile clams reared in seawater with high pCO2 (~1200 ppm) displayed an enhanced susceptibility to bacterial pathogens. Higher

Read More >

Related Projects

See our funded projects for this Focus Area

A large coral in American Samoa known as "Big Momma" Credit: NOAA Fisheries
This project provides new ocean acidification education to communities in American Samoa...
Secluded beach with tide pools and algae covered rock formations captured soon after sunrise, Half Moon Bay, California, USA. Credit: Jan Arendtsz (Flickr, CC)
This project provides a hands-on ocean and coastal acidification curriculum to students from coastal communities in Redwood City, California...
California's Humboldt coast as seen from a high vantage near sunset. Fog lingers above the King Range National Conservation Area. Credit: Guest photographer Bob Wick for CA Bureau of Land Management
Broadening Ocean Acidification Teaching and Learning (BOATL) offers teacher professional development and ocean acidification science education to schools and local Tribes...
Haystack Rock on Cannon Beach, Oregon (2024). Credit: Kevin Crosby (Creative Commons)
This project seeks to address gaps in ocean and environmental education and improve outcomes for Oregon’s youth through the Oregon State University’s Science Math Investigative Learning Experiences (SMILE) Program...
North Carolina seen from space from MODIS on NASA's Aqua satellite on June 30, 2022
This project delivers ocean acidification education in rural North Carolina schools...
Eastern oyster (Crassostrea virginica). Credit: NOAA Fisheries
This project creates a research course for high school students focused on career development, ocean acidification science and stewardship...

Related Publications

See publications produced by our funded projects for this Focus Area

Citation: Smith, A. L., Jessyca LaBadie, Aly Busse, Emilie Solomon, Casie Farrell, Daniel M. Holstein, Zuo George Xue, Philip M. Gravinese. (2024). Will Climate Change Alter the Swimming Behavior of Larval Stone Crabs?: A Guided-Inquiry Lesson. Current The Journal of Marine Education, 39(2). https://doi.org/10.5334/cjme.117
Citation: Shamberger, K. E. F., Feely, R. A., Sabine, C. L., Atkinson, M. J., DeCarlo, E. H., Mackenzie, F. T., Drupp, P. S., & Butterfield, D. A. (2011). Calcification and organic production on a Hawaiian coral reef. Marine Chemistry, 127(1-4), 64-75. https://doi.org/10.1016/j.marchem.2011.08.003
Citation: Frölicher, T. L., Joos, F., and Raible, C. C.: Sensitivity of atmospheric CO2 and climate to explosive volcanic eruptions, Biogeosciences, 8, 2317–2339, https://doi.org/10.5194/bg-8-2317-2011, 2011.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action