Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOAA’s Ocean Acidification Program Research Region

Region: Pacific Islands

Related Posts

See news related to this Research Region

Emerging Applications of Longstanding Autonomous Ocean Carbon Observations

For over two decades, NOAA’s Pacific Marine Environmental Laboratory (PMEL) has been developing and deploying autonomous ocean carbon measurement technologies. PMEL currently maintains a network of air-sea CO2 and ocean acidification time-series measurements on 33 surface buoys, including the world’s longest record of air-sea CO2 measured from a buoy. These sites are located in every

Read More >
A vibrant coral reef is the background for the United States Ocean Acidification Action Plan, released December 10, 2023 at COP28
Featured

U. S. Ocean Acidification Action Plan Released

A Roadmap for the other National Ocean Acidification Action Plans The United States released the U.S. Ocean Acidification (OA) Action Plan during the United Nations Climate Change Conference (COP28) on December 10, 2023. This side event was co-hosted by NOAA Ocean Acidification Program, U.S. Department of State, and International Alliance to Combat Ocean Acidification (‘OA

Read More >
The colder water assemblage of foraminifera. T. quinqueloba, N. incompta and G. falconensis are common. Credit: NOAA Fisheries
Carbon Dioxide Removal

Determining the Influence of Ocean Alkalinity Enhancement on Foraminifera Calcification, Distribution, and Calcium carbonate Production

Why we care Foraminifera, or forams, are single-celled organisms that produce calcium carbonate shells and play a crucial role in the ocean’s carbon cycle. Ocean alkalinity enhancement aims to increase the ocean’s ability to absorb carbon dioxide by enhancing its buffering capacity. However, the impact of the addition of alkalinity on foraminifera is not well

Read More >
Coral Reef off the coast of Coconut Island in Kāneʻohe. Photo by Keisha Bahr
Carbon Dioxide Removal

Assessing the effects and risks of ocean alkalinity enhancement on the physiology, functionality, calcification, and mineralogy of corals and crustose coralline algae in the Pacific

Why we care One potential benefit of ocean alkalinity enhancement is reversing ocean acidification, which can impact marine life like corals, clams, and crabs. This project investigates the potential benefits and risks of ocean alkalinity enhancement on Pacific tropical and subtropical corals and crustose coralline algae. The project’s goal is to understand if ocean alkalinity

Read More >
Wastewater treatment plant. Courtesy of East Bay Utility District
Carbon Dioxide Removal

Assessing efficacy of electrochemical ocean alkalinity enhancement at an existing outfall using tracer release experiments and oceanographic models

Why we care Adding alkalinity to the ocean may provide a safe and effective approach to removing carbon dioxide from the atmosphere. Assessing the efficacy and efficiency of ocean alkalinity enhancement are essential steps to ensuring that this method of carbon dioxide removal can contribute to mitigating climate change and ocean acidification.  What we will

Read More >
Air-Sea Interaction Spar buoy. Credit: Lt. Elizabeth Crapo, NOAA Corps
Carbon Dioxide Removal

Data requirements for quantifying natural variability and the background ocean carbon sink in mCDR models

Why we care Ocean uptake of carbon has great natural variability that accompanies rising atmospheric carbon dioxide. A major challenge for marine carbon dioxide removal will be to quantify its additional carbon removal from the atmosphere. Ocean models can quantify carbon uptake attributed to marine carbon dioxide removal will likely be the basis for carbon

Read More >
adaptation strategies

Vulnerability to Ocean Acidification in Puerto Rico

Designing a framework for an ocean acidification vulnerability assessment in Puerto Rico through stakeholder interviews, science synthesis, and a regional workshop Why we careLocal and federal efforts (e.g., 4th National Climate Assessment, Puerto Rico Climate Change Report) have identified ocean acidification as a primary concern for economically important species in the U.S. Caribbean. In Puerto

Read More >

Maintaining an ocean acidification monitoring buoy in American Samoa

National Coral Reef Monitoring Program: Support for Annual Refurbishment of MApCO2 Buoy and Cal/Val Sampling at Class III Site in American Samoa

Why we care
Long-term observations of carbonate chemistry at U.S.-affiliated coral reef sites are critical to understanding the impact of ocean acidification (OA) on coral ecosystems over time. The NOAA Coral Reef Conservation

Read More >
ocean acidification

Regional Vulnerability Assessment in the Hawaiian Archipelago

Assessing Current and Future Ocean Acidification and Climate Vulnerabilities Along the Hawaiian Archipelago

Why we care
The Insular Pacific-Hawaiian Large Marine Ecosystem (IPH-LME) Complex provides critical benthic and oceanographic habitats for important fisheries and protected resources. A critical missing piece in assessing vulnerability in the Hawaiian Islands to ocean change is understanding the

Read More >

Related Projects

See our funded projects for this Focus Area

Calm sea with mountains on horizon and expansive sky in Ketchikan, Alaska. Credit: Phil Price, Flickr

Why we care:Alaskan Native communities rely on healthy marine ecosystems for work, sustenance and their way of life. Ocean acidification has documented impacts to marine life and these communities. An..

Spruce Island in the Kodiak region of Alaska. Bull kelp at water's surface with island in the background. Ocean acidification monitoring in this region helps prepare Kodiak Tribes for the impacts of ocean change. Credit: NOAA

Why we care:Alaskan Native communities rely on healthy marine ecosystems for work, sustenance and their way of life. Ocean acidification has documented impacts to marine life and these communities. Community..

Fisherman pulling up sugar kelp. Seaweed cultivation may be one avenue for marine carbon dioxide removal and mitigating ocean acidification. Credit: GreenWave/Ron Gautreau.

Award amount: $1,451,575Duration: 3 yearsFunding agency: NOAA Ocean Acidification Program (OAP), National Oceanographic Partnership Program (NOPP) Why we care Growing seaweed in the ocean could be one way to alleviate some..

Plankton bloom seen from space. Credit: NASA

Why we care Iron is a critical limiting nutrient for phytoplankton in the ocean. Iron fertilization adds this limiting nutrient to promote phytoplankton blooms as a way to take up..

Breaking wave in sunlight. Credit: NOAA Ocean Service

Why we care Ocean alkalinity enhancement has the potential to capture carbon and mitigate ocean acidification. While ocean alkalinity enhancement is a promising approach for removing carbon from the atmosphere,..

Terrestrial liming at golf courses serve as testbeds for this method for carbon capture and mitigating acidification. Credit: Your Golf Travel (Creative Commons)

Why we care Terrestrial liming, or the addition of a basic (alkaline) material like calcium carbonate to crops and lawns is a common agricultural soil treatment. When applied on land..

Related Publications

See publications produced by our funded projects for this Focus Area

Citation: Kearney KA, Bograd SJ, Drenkard E, Gomez FA, Haltuch M, Hermann AJ, Jacox MG, Kaplan IC, Koenigstein S, Luo JY, Masi M, Muhling B, Pozo Buil M and Woodworth-Jefcoats PA (2021) Using Global-Scale Earth System Models for Regional Fisheries Applications. Front. Mar. Sci. 8:622206. doi: 10.3389/fmars.2021.622206
Citation: Lotterhos, K.E., Láruson, Á.J. & Jiang, LQ. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci Rep 11, 15535 (2021). https://doi.org/10.1038/s41598-021-94872-4
Citation: Xue, L., Cai, W.-J., Jiang, L.-Q., & Wei, Q. (2021). Why are surface ocean pH and CaCO3 saturation state often out of phase in spatial patterns and seasonal cycles? Global Biogeochemical Cycles, 35, e2021GB006949. https://doi.org/10.1029/2021GB006949
Scroll to Top

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action