Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOAA’s Ocean Acidification Program Research Region

Region: Global

Related Posts

See news related to this Research Region

Rapid assessments of Pacific Ocean net coral reef carbonate budgets and net calcification following the 2014–2017 global coral bleaching event

The 2014–2017 global coral bleaching event caused widespread coral mortality; however, its impact on the capacity for coral reefs to maintain calcium carbonate structures has not been determined. Here, we quantified remotely sensed maximum heat stress during the 2014–2017 bleaching event, census-based net carbonate budgets from benthic imagery and fish survey data, and net reef

Read More >

Best Practice Data Standards for Discrete Chemical Oceanographic Observations

Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing

Read More >

An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2021

The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2021 is an update of the previous version, GLODAPv2.2020 (Olsen et al., 2020). The major changes are

Read More >

Advancing best practices for assessing trends of ocean acidification time series

Assessing the status of ocean acidification across ocean and coastal waters requires standardized procedures at all levels of data collection, dissemination, and analysis. Standardized procedures for assuring quality and accessibility of ocean carbonate chemistry data are largely established, but a common set of best practices for ocean acidification trend analysis is needed to enable global

Read More >

Implications of salinity normalization of seawater total alkalinity in coral reef metabolism studies

Salinity normalization of total alkalinity (TA) and dissolved inorganic carbon (DIC) data is commonly used to account for conservative mixing processes when inferring net metabolic modification of seawater by coral reefs. Salinity (S), TA, and DIC can be accurately and precisely measured, but salinity normalization of TA (nTA) and DIC (nDIC) can generate considerable and

Read More >

Stressing over the Complexities of Multiple Stressors in Marine and Estuarine Systems

Aquatic ecosystems are increasingly threatened by multiple human-induced stressors associated with climate and anthropogenic changes, including warming, nutrient pollution, harmful algal blooms, hypoxia, and changes in CO2 and pH. These stressors may affect systems additively and synergistically but may also counteract each other. The resultant ecosystem changes occur rapidly, affecting both biotic and abiotic components and

Read More >

Characterizing Mean and Extreme Diurnal Variability of Ocean CO2 System Variables Across Marine Environments

Diurnal variability of ocean CO2 system variables is poorly constrained. Here, this variability and its drivers are assessed using 3-h observations collected over 8–140 months at 37 stations located in diverse marine environments. Extreme diurnal variability, that is, when the daily amplitude exceeds the 99th percentile of diurnal variability, is comparable in magnitude to the seasonal amplitude and

Read More >

The Ocean Carbon Response to COVID-Related Emissions Reductions

The decline in global emissions of carbon dioxide due to the COVID-19 pandemic provides a unique opportunity to investigate the sensitivity of the global carbon cycle and climate system to emissions reductions. Recent efforts to study the response to these emissions declines has not addressed their impact on the ocean, yet ocean carbon absorption is

Read More >

Related Projects

See our funded projects for this Focus Area

A large coral in American Samoa known as "Big Momma" Credit: NOAA Fisheries
This project provides new ocean acidification education to communities in American Samoa...
Secluded beach with tide pools and algae covered rock formations captured soon after sunrise, Half Moon Bay, California, USA. Credit: Jan Arendtsz (Flickr, CC)
This project provides a hands-on ocean and coastal acidification curriculum to students from coastal communities in Redwood City, California...
California's Humboldt coast as seen from a high vantage near sunset. Fog lingers above the King Range National Conservation Area. Credit: Guest photographer Bob Wick for CA Bureau of Land Management
Broadening Ocean Acidification Teaching and Learning (BOATL) offers teacher professional development and ocean acidification science education to schools and local Tribes...
Haystack Rock on Cannon Beach, Oregon (2024). Credit: Kevin Crosby (Creative Commons)
This project seeks to address gaps in ocean and environmental education and improve outcomes for Oregon’s youth through the Oregon State University’s Science Math Investigative Learning Experiences (SMILE) Program...
North Carolina seen from space from MODIS on NASA's Aqua satellite on June 30, 2022
This project delivers ocean acidification education in rural North Carolina schools...
Eastern oyster (Crassostrea virginica). Credit: NOAA Fisheries
This project creates a research course for high school students focused on career development, ocean acidification science and stewardship...

Related Publications

See publications produced by our funded projects for this Focus Area

Citation: Smith, A. L., Jessyca LaBadie, Aly Busse, Emilie Solomon, Casie Farrell, Daniel M. Holstein, Zuo George Xue, Philip M. Gravinese. (2024). Will Climate Change Alter the Swimming Behavior of Larval Stone Crabs?: A Guided-Inquiry Lesson. Current The Journal of Marine Education, 39(2). https://doi.org/10.5334/cjme.117
Citation: Shamberger, K. E. F., Feely, R. A., Sabine, C. L., Atkinson, M. J., DeCarlo, E. H., Mackenzie, F. T., Drupp, P. S., & Butterfield, D. A. (2011). Calcification and organic production on a Hawaiian coral reef. Marine Chemistry, 127(1-4), 64-75. https://doi.org/10.1016/j.marchem.2011.08.003
Citation: Frölicher, T. L., Joos, F., and Raible, C. C.: Sensitivity of atmospheric CO2 and climate to explosive volcanic eruptions, Biogeosciences, 8, 2317–2339, https://doi.org/10.5194/bg-8-2317-2011, 2011.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action