Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOAA’s Ocean Acidification Program Research Region

Region: Mid-Atlantic

Related Posts

See news related to this Research Region

Advancing best practices for assessing trends of ocean acidification time series

Assessing the status of ocean acidification across ocean and coastal waters requires standardized procedures at all levels of data collection, dissemination, and analysis. Standardized procedures for assuring quality and accessibility of ocean carbonate chemistry data are largely established, but a common set of best practices for ocean acidification trend analysis is needed to enable global

Read More >

Partial pressure (or fugacity) of carbon dioxide, salinity and temperature collected from surface underway observations during R/V Rachel Carson and other commercial boat cruises in the Chesapeake Bay from 2016-05-04 to 2019-02-22 (NCEI Accession 0191507)

This dataset includes surface underway data collected during the R/V Rachel Carson and other commercial boat cruises in the Chesapeake Bay from 2016-05-04 to 2019-02-22. These data include partial pressure (or fugacity) of carbon dioxide in the water, sea surface salinity and sea surface temperature. The data are from the first bay-wide observational study of

Read More >

Strategy for NOAA Carbon Dioxide Removal (CDR) Research: A White Paper documenting a potential NOAA CDR Science Strategy as an element of NOAA’s Climate Interventions Portfolio

This document is intended to serve as a reference for exploration of carbon removal research at NOAA. The report was drafted by authors from across NOAA to provide strategic direction to relevant labs and programs in multiple line offices. The goal has been to assemble as much information as possible in order to facilitate conversations

Read More >

Eutrophication, Harmful Algae, Oxygen Depletion, and Acidification

Eutrophication is among the most widespread and deleterious anthropogenic impacts to coastal marine ecosystems. The Chesapeake Bay (CB) and Northern Adriatic Sea (NAS) have long histories of nutrient-fueled eutrophication. We compare the susceptibility and symptoms of eutrophication in both systems and discuss recent reversals of eutrophication (oligotrophication) and future considerations. Differences in the residence time

Read More >

Assessing drivers of estuarine pH: A comparative analysis of the continental U.S.A.’s two largest estuaries

In estuaries, local processes such as changing material loads from the watershed and complex circulation create dynamic environments with respect to ecosystem metabolism and carbonate chemistry that can strongly modulate impacts of global atmospheric CO2 increases on estuarine pH. Long-term (> 20 yr) surface water pH records from the USA’s two largest estuaries, Chesapeake Bay (CB) and

Read More >

Simultaneous determination of dissolved inorganic carbon (DIC) concentration and stable isotope (δ<sup>13</sup>C-DIC) by Cavity Ring-Down Spectroscopy: Application to study carbonate dynamics in the Chesapeake Bay

Dissolved inorganic carbon (DIC) and its stable isotope (δ13C-DIC) are powerful tools for exploring aquatic biogeochemistry and the carbon cycle. Traditionally, they are determined separately with a DIC analyzer and an isotope ratio mass spectrometer. We present an approach that uses a whole-water CO2 extraction device coupled to a Cavity Ring-Down Spectroscopy (CRDS) CO2 and isotopic analyzer

Read More >

Source partitioning of oxygen-consuming organic matter in the hypoxic zone of the Chesapeake Bay

We surveyed the carbonate system along the main channel of the Chesapeake Bay in June 2016 to elucidate carbonate dynamics and the associated sources of oxygen-consuming organic matter. Using a two endmember mixing calculation, chemical proxies, and stoichiometry, we demonstrated that in early summer, dissolved inorganic carbon (DIC) dynamics were controlled by aerobic respiration in

Read More >

Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling

Uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has acidified the ocean and threatened the health of marine organisms and their ecosystems. In coastal waters, acidification is often enhanced by CO2 and acids produced under high rates of biological respiration. However, less is known about buffering processes that counter coastal acidification in eutrophic and seasonally

Read More >

Understanding Anthropogenic Impacts on pH and Aragonite Saturation State in Chesapeake Bay: Insights From a 30-Year Model Study

Ocean acidification (OA) is often defined as the gradual decline in pH and aragonite saturation state (ΩAr) for open ocean waters as a result of increasing atmospheric pCO2. Potential long-term trends in pH and ΩAr in estuarine environments are often obscured by a variety of other factors, including changes in watershed land use and associated riverine carbonate

Read More >

Discerning effects of warming, sea level rise and nutrient management on long-term hypoxia trends in Chesapeake Bay

Analyses of dissolved oxygen concentration in Chesapeake Bay over the past three decades suggested seasonally-dependent changes in hypoxic volume and an earlier end of hypoxic conditions. While these studies hypothesized and evaluated multiple potential driving mechanisms, quantitative evidence for the relative effects of various drivers has yet to be presented. In this study, a coupled

Read More >

Related Projects

See our funded projects for this Focus Area

Calm sea with mountains on horizon and expansive sky in Ketchikan, Alaska. Credit: Phil Price, Flickr

Why we care:Alaskan Native communities rely on healthy marine ecosystems for work, sustenance and their way of life. Ocean acidification has documented impacts to marine life and these communities. An..

Spruce Island in the Kodiak region of Alaska. Bull kelp at water's surface with island in the background. Ocean acidification monitoring in this region helps prepare Kodiak Tribes for the impacts of ocean change. Credit: NOAA

Why we care:Alaskan Native communities rely on healthy marine ecosystems for work, sustenance and their way of life. Ocean acidification has documented impacts to marine life and these communities. Community..

Fisherman pulling up sugar kelp. Seaweed cultivation may be one avenue for marine carbon dioxide removal and mitigating ocean acidification. Credit: GreenWave/Ron Gautreau.

Award amount: $1,451,575Duration: 3 yearsFunding agency: NOAA Ocean Acidification Program (OAP), National Oceanographic Partnership Program (NOPP) Why we care Growing seaweed in the ocean could be one way to alleviate some..

Plankton bloom seen from space. Credit: NASA

Why we care Iron is a critical limiting nutrient for phytoplankton in the ocean. Iron fertilization adds this limiting nutrient to promote phytoplankton blooms as a way to take up..

Breaking wave in sunlight. Credit: NOAA Ocean Service

Why we care Ocean alkalinity enhancement has the potential to capture carbon and mitigate ocean acidification. While ocean alkalinity enhancement is a promising approach for removing carbon from the atmosphere,..

Terrestrial liming at golf courses serve as testbeds for this method for carbon capture and mitigating acidification. Credit: Your Golf Travel (Creative Commons)

Why we care Terrestrial liming, or the addition of a basic (alkaline) material like calcium carbonate to crops and lawns is a common agricultural soil treatment. When applied on land..

Related Publications

See publications produced by our funded projects for this Focus Area

Citation: Tobias Schwoerer, Kevin Berry, Darcy G. Dugan, David C. Finnoff, Molly Mayo, Jan Ohlberger, Eric J. Ward, Fish or not fish—fisheries participation and harvest diversification under economic and ecological change, Marine Policy, Volume 157, 2023, 105833, ISSN 0308-597X,
Citation: Sharp, J.D., Jiang, LQ., Carter, B.R. et al. A mapped dataset of surface ocean acidification indicators in large marine ecosystems of the United States. Sci Data 11, 715 (2024).
Citation: Barkley HC, Oliver TA, Halperin AA, Pomeroy NV, Smith JN, Weible RM, Young CW, Couch CS, Brainard RE and Samson JC (2022) Coral reef carbonate accretion rates track stable gradients in seawater carbonate chemistry across the U.S. Pacific Islands. Front. Mar. Sci. 9:991685. doi: 10.3389/fmars.2022.991685
Scroll to Top


The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:


Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare


Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes


Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally


On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide


You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action