Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Monitoring & Modeling

Seasonal and spatial variability in surface <em>p</em>CO<sub>2</sub> and air–water CO<sub>2</sub> flux in the Chesapeake Bay

Interactions between riverine inputs, internal cycling, and oceanic exchange result in dynamic variations in the partial pressure of carbon dioxide (pCO2) in large estuaries. Here, we report the first bay-wide, annual-scale observations of surface pCO2 and air–water CO2 flux along the main stem of the Chesapeake Bay, revealing large annual variations in pCO2 (43–3408 μatm) and a spatial-dependence of pCO2 on internal and […]

Seasonal and spatial variability in surface <em>p</em>CO<sub>2</sub> and air–water CO<sub>2</sub> flux in the Chesapeake Bay Read More »

Effects of Wind Straining on Estuarine Stratification: A Combined Observational and Modeling Study

A combined observational and numerical modeling study was conducted to clarify the effects of wind straining on estuarine stratification. Long-term mooring observations in the middle of Chesapeake Bay showed an asymmetric stratification response to along-channel winds. The stratification decreased under up-estuary winds. Under down-estuary winds, however, the stratification increased at moderate wind speeds but decreased

Effects of Wind Straining on Estuarine Stratification: A Combined Observational and Modeling Study Read More »

Ecosystem Metabolism and Carbon Balance in Chesapeake Bay: A 30-Year Analysis Using a Coupled Hydrodynamic-Biogeochemical Model

The carbon cycle in estuarine environments is difficult to quantify because of substantial spatiotemporal heterogeneity in the sources, exchanges, and fates of carbon. We overcame these challenges with a multidecade numerical modeling analysis of seasonal, interannual, and decadal variability in net ecosystem metabolism (NEM) and associated carbon fluxes in Chesapeake Bay. Interannual variability in NEM

Ecosystem Metabolism and Carbon Balance in Chesapeake Bay: A 30-Year Analysis Using a Coupled Hydrodynamic-Biogeochemical Model Read More »

Supply-controlled calcium carbonate dissolution decouples the seasonal dissolved oxygen and pH minima in Chesapeake Bay

Acidification can present a stress on organisms and habitats in estuaries in addition to hypoxia. Although oxygen and pH decreases are generally coupled due to aerobic respiration, pH dynamics may be more complex given the multiple modes of buffering in the carbonate system. We studied the seasonal cycle of dissolved oxygen (DO), pH, dissolved inorganic

Supply-controlled calcium carbonate dissolution decouples the seasonal dissolved oxygen and pH minima in Chesapeake Bay Read More »

Modeling Impacts of Nutrient Loading, Warming, and Boundary Exchanges on Hypoxia and Metabolism in a Shallow Estuarine Ecosystem

We sought to investigate the impacts of nutrient loading, warming, and open-water boundary exchanges on a shallow estuary through idealized numerical model experiments. We performed these simulations using a stand-alone implementation of the Regional Ocean Modeling System-Row-Column AESOP biogeochemical model in the Chester River estuary, a tributary estuary within the Chesapeake Bay estuarine complex. We

Modeling Impacts of Nutrient Loading, Warming, and Boundary Exchanges on Hypoxia and Metabolism in a Shallow Estuarine Ecosystem Read More »

Characterizing Mean and Extreme Diurnal Variability of Ocean CO<sub>2</sub> System Variables Across Marine Environments

Diurnal variability of ocean CO2 system variables is poorly constrained. Here, this variability and its drivers are assessed using 3-h observations collected over 8–140 months at 37 stations located in diverse marine environments. Extreme diurnal variability, that is, when the daily amplitude exceeds the 99th percentile of diurnal variability, is comparable in magnitude to the seasonal amplitude and

Characterizing Mean and Extreme Diurnal Variability of Ocean CO<sub>2</sub> System Variables Across Marine Environments Read More »

Natural Analogues in pH Variability and Predictability across the Coastal Pacific Estuaries: Extrapolation of the Increased Oyster Dissolution under Increased pH Amplitude and Low Predictability Related to Ocean Acidification

Coastal-estuarine habitats are rapidly changing due to global climate change, with impacts influenced by the variability of carbonate chemistry conditions. However, our understanding of the responses of ecologically and economically important calcifiers to pH variability and temporal variation is limited, particularly with respect to shell-building processes. We investigated the mechanisms driving biomineralogical and physiological responses

Natural Analogues in pH Variability and Predictability across the Coastal Pacific Estuaries: Extrapolation of the Increased Oyster Dissolution under Increased pH Amplitude and Low Predictability Related to Ocean Acidification Read More »

Forecasts for Alaska Fisheries

Crab pots and fishing nets in Alaska's Dutch Harbor
Image credit: Michael Theberge

Understanding seasonal changes in ocean acidification in Alaskan waters and the potential impacts to the multi-billion-dollar fishery sector is a main priority. Through work funded by NOAA’s Ocean Acidification Program, the Pacific Marine Environmental Laboratory developed a model capable of depicting past ocean chemistry conditions for the Bering Sea and is now testing the ability of this model to forecast future conditions. This model is being used to develop an ocean acidification indicator provided to fisheries managers in the annual NOAA Eastern Bering Sea Ecosystem Status Report.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

Closeup of oysters cupped in someone's hands

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action