Biological Response
NOAA declares Commitment to UN Decade OARS Programme
NOAA’s Ocean Acidification Program submitted a Commitment to the international Ocean Acidification Research for Sustainability (OARS) Programme on December 4, 2023.
NOAA declares Commitment to UN Decade OARS Programme Read More »
Juvenile Atlantic sea scallop, Placopecten magellanicus, energetic response to increased carbon dioxide and temperature changes
This study assessed the energy budget for juvenile Atlantic Sea Scallop, Placopecten magellanicus, during a natural drop in temperature (15.6°C to 5.8°C) over an 8-week time period during the fall at three different enrichment levels of carbon dioxide (CO2). Every 2 weeks, individuals were sampled for ecophysiological measurements of feeding activity, respiration rate (RR) and excretion
Understanding the effects of ocean acidification on Dungeness crab
This project evaluates the conditions and mechanisms of ocean acidification impacts on Dungeness crabs.
Understanding the effects of ocean acidification on Dungeness crab Read More »
Molecular Features Associated with Resilience to Ocean Acidification in the Northern Quahog, Mercenaria mercenaria
The increasing concentration of CO2 in the atmosphere and resulting flux into the oceans will further exacerbate acidification already threatening coastal marine ecosystems. The subsequent alterations in carbonate chemistry can have deleterious impacts on many economically and ecologically important species including the northern quahog (Mercenaria mercenaria). The accelerated pace of these changes requires an understanding of
NOAA Invests in Harmful Algal Bloom and Ocean Acidification Research
NOAA invests $18.9M in a coordinated effort to maximize advances in harmful algal bloom (HAB) mitigation, monitoring and forecasting. Four of new research awards support ($1.5M) funded in partnership by NOAA’s National Centers for Coastal Ocean Science (NCCOS) and NOAA’s Ocean Acidification program will determine interactive effects of HABs and ocean acidification. Other projects supported through this effort will establish a U.S. Harmful Algal Bloom Control Incubator, enhance detection of HAB toxins and improve forecasts and investigate the socioeconomic impacts of HABs. Read more
Project Highlights
University of Michigan, University of Minnesota Duluth, Oberlin College, University of Kentucky, and University of Toledo received $281,975 to improve our understanding of the synergistic impacts of acidification, temperature, total alkalinity, and nutrients on toxic cyanobacteria harmful algal blooms in the Great Lakes.
Woods Hole Oceanographic Institute, Bowdoin College, and NERACOOS received $499,999 to address gaps in understanding relationships between harmful algal bloom behavior and ocean acidification in the northeast Atlantic, especially where it is associated with coastal eutrophication and hypoxia.
Stony Brook University, Adelphi University, and St. Joseph’s College received $364,265 to establish a comprehensive understanding of how three of the most prominent HABs on the US east coast respond to ocean acidification, and how their co-occurrence will economically impact fisheries and shellfisheries.
Northwest Indian College, San Francisco State University, and University of Washington received $355,281 to understand the current relationships between ocean acidification and harmful algal bloom interactions in the Salish Sea, and to quantify how ocean acidification influences growth and toxicity.
Autonomous glider collects information to track harmful algal blooms and water quality. Credit: Ben Yair Raanan, MBARI
NOAA Invests in Harmful Algal Bloom and Ocean Acidification Research Read More »
Join us for the Ocean Acidification Community Meeting Jan 4-6, 2023
NOAA OAP convenes community meeting in San Diego, CA!
Every three years, the NOAA Ocean Acidification Program convenes researchers, communicators and others in the OA community for a meeting to discuss and share the latest research and future needs and directions. We want your participation! Registration is free.
Meeting Goals
- Shape the future strategic direction of the OAP
- Inform community members of recent OAP-supported efforts
- Foster collaborations within the OA research community
- Identify critical research gaps and efforts to address them
- Highlight and discuss diversity, equity, inclusion, accessibility, and justice in OA research and our community
Find more details and register HERE.
Join us for the Ocean Acidification Community Meeting Jan 4-6, 2023 Read More »
Interactions between ocean acidification and metal contaminant uptake by Blue Mussels
Assessing ocean acidification as a driver for enhanced metals uptake by Blue mussels (Mytilus edulis): implications for aquaculture and seafood safety
Why we care
Ocean acidification causes changes in the chemistry of stressors such as metals and may affect both the susceptibility of these animals to the contaminants as well as the toxicity. This is especially important for animals like blue mussels and other economically important shellfish that accumulate toxins in their bodies. Metal accumulation as a co-stressor of ocean acidification is not well documented for northeastern U.S. shellfish aquaculture species and better understanding these relationships supports seafood safety.
What we are doing
This work investigates the impacts of metal speciation (forms) on blue mussels under acidified conditions in both field and laboratory experiments. Scientists will first study uptake rates of these metals by blue mussels and then see how changing conditions affects their accumulation and toxicity. Comparing what they learn in the lab to what occurs in the field where these mussels are farmed, helps support decisions for seafood safety and industry best practices.
Benefits of our work
Coastal managers and aquaculturists can use these results that provide the societal benefits of better informed siting of aquaculture and safer seafood.
Interactions between ocean acidification and metal contaminant uptake by Blue Mussels Read More »
Impacts of Ocean Acidification on Alaskan and Arctic fishes
Effects of OA on Alaskan and Arctic fishes: physiological sensitivity in a changing ecosystem
Why we care
There is significant concern about ocean acidification disrupting marine ecosystems, reducing productivity of important fishery resources, and impacting the communities that rely upon those resources. To predict the ecological and socioeconomic impacts of acidification, it is critical to understand the complex interactions between environmental stressors of physiology and ecology of marine fishes. Previous work on Alaskan groundfish focused on direct physiological effects of OA on early life stages. We need to further this work to understand the interaction between OA and co-stressors like elevated temperatures on fish productivity.
What we are doing
This AFSC project examines the interactive effects of OA and elevated temperatures on three fish species that are critical to Alaska and Arctic fisheries: Pacific cod, Arctic cod, and yellowfin sole. Laboratory experiments will track the impact of OA exposure on adult Arctic cod reproductive output, egg quality, and larval production. Further experiments will consider the potential for within-generation and trans-generational acclimation and adaptation to environmental changes. Risk assessments for regional fisheries will incorporate the data from this project.
Benefits of our work
Findings from this research will provide the foundation necessary to evaluate the ecological and socioeconomic impacts of ocean acidification in Alaskan and Arctic waters.
Impacts of Ocean Acidification on Alaskan and Arctic fishes Read More »