Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Monitoring & Modeling

Ocean Acidification Coastal Research: Uniting Investigations and Shipboard Experiments (OA CRUISE) Funding Opportunity

NOAA’s Ocean Acidification Program (OAP) is soliciting cruise project proposals to complement core observing activities on existing cruises as part of its upcoming coastal ocean acidification (OA) cruises targeting the US Coastal Large Marine Ecosystems.

Ocean Acidification Coastal Research: Uniting Investigations and Shipboard Experiments (OA CRUISE) Funding Opportunity Read More »

Advancing best practices for assessing trends in ocean acidification time series

Assessing the status of ocean acidification across ocean and coastal waters requires standardized procedures at all levels of data collection, dissemination, and analysis. Standardized procedures for assuring quality and accessibility of ocean carbonate chemistry data are largely established, but a common set of best practices for ocean acidification trend analysis is needed to enable global time series comparisons, establish accurate records of change, and communicate the current status of ocean acidification within and outside the scientific community. Here we expand upon several published trend analysis techniques and package them into a set of best practices for assessing trends of ocean acidification time series. These best practices are best suited for time series capable of characterizing seasonal variability, typically those with sub-seasonal (ideally monthly or more frequent) data collection. Given ocean carbonate chemistry time series tend to be sparse and discontinuous, additional research is necessary to further advance these best practices to better address uncharacterized variability that can result from data discontinuities. This package of best practices and the associated open-source software for computing and reporting trends is aimed at helping expand the community of practice in ocean acidification trend analysis. A broad community of practice testing these and new techniques across different data sets will result in improvements and expansion of these best practices in the future.

Advancing best practices for assessing trends in ocean acidification time series Read More »

Decoupling of Estuarine Hypoxia and Acidification as Revealed by Historical Water Quality Data

Hypoxia and acidification are commonly coupled in eutrophic aquatic environments because aerobic respiration is usually dominant in bottom waters and can lower dissolved oxygen (DO) and pH simultaneously. However, the degree of coupling, which can be weakened by non-aerobic respiration and CaCO3 cycling, has not been adequately assessed. In this study, we applied a box model

Decoupling of Estuarine Hypoxia and Acidification as Revealed by Historical Water Quality Data Read More »

Quantification of the Dominant Drivers of Acidification in the Coastal Mid-Atlantic Bight

In shallow coastal shelves like the Mid-Atlantic Bight (MAB), ocean acidification due to increased atmospheric carbon dioxide (CO2) is compounded by highly variable coastal processes including riverine freshwater inputs, nutrient loading, biogeochemical influence, coastal currents and water mass mixing, and seasonal transitions in physical parameters. Past deconstructions of carbonate system drivers in the MAB have

Quantification of the Dominant Drivers of Acidification in the Coastal Mid-Atlantic Bight Read More »

NOAA Invests in Harmful Algal Bloom and Ocean Acidification Research

NOAA invests $18.9M in a coordinated effort to maximize advances in harmful algal bloom (HAB) mitigation, monitoring and forecasting. Four of new research awards support ($1.5M) funded in partnership by NOAA’s National Centers for Coastal Ocean Science (NCCOS) and NOAA’s Ocean Acidification program will determine interactive effects of HABs and ocean acidification. Other projects supported through this effort will establish a U.S. Harmful Algal Bloom Control Incubator, enhance detection of HAB toxins and improve forecasts and investigate the socioeconomic impacts of HABs. Read more
Project Highlights
University of MichiganUniversity of Minnesota DuluthOberlin CollegeUniversity of Kentucky, and University of Toledo received $281,975 to improve our understanding of the synergistic impacts of acidification, temperature, total alkalinity, and nutrients on toxic cyanobacteria harmful algal blooms in the Great Lakes. 
Woods Hole Oceanographic InstituteBowdoin College, and NERACOOS received $499,999 to address gaps in understanding relationships between harmful algal bloom behavior and ocean acidification in the northeast Atlantic, especially where it is associated with coastal eutrophication and hypoxia.
Stony Brook UniversityAdelphi University, and St. Joseph’s College received $364,265 to establish a comprehensive understanding of how three of the most prominent HABs on the US east coast respond to ocean acidification, and how their co-occurrence will economically impact fisheries and shellfisheries. 
Northwest Indian CollegeSan Francisco State University, and University of Washington received $355,281 to understand the current relationships between ocean acidification and harmful algal bloom interactions in the Salish Sea, and to quantify how ocean acidification influences growth and toxicity. 
📸 Autonomous glider collects information to track harmful algal blooms and water quality. Credit: Ben Yair Raanan, MBARI

NOAA Invests in Harmful Algal Bloom and Ocean Acidification Research Read More »

Ocean acidification in the Gulf of Mexico: Drivers, impacts, and unknowns

We synthesize the current peer-reviewed literature on Gulf of Mexico (GOM) acidification across the ocean-estuarine continuum and identify critical knowledge, research, and monitoring gaps that limit our current understanding of environmental, ecological, and socioeconomic impacts from acidification.• The GOM remains a relatively understudied region with respect to ocean acidification (OA), particularly with respect to regionally important organism and ecosystem responses.• Within the GOM,

Ocean acidification in the Gulf of Mexico: Drivers, impacts, and unknowns Read More »

Inorganic Carbon Transport and Dynamics in the Florida Straits

A large amount of ocean heat and carbon is transported northward through the Florida Straits, the upper limb of the Atlantic Meridional Circulation, and plays a role in ocean carbonate chemistry along the U.S. east coast. Our understanding of carbon transport and ocean acidification in the Florida Straits is limited by insufficient carbonate chemistry data

Inorganic Carbon Transport and Dynamics in the Florida Straits Read More »

Forecasts for Alaska Fisheries

Crab pots and fishing nets in Alaska's Dutch Harbor
Image credit: Michael Theberge

Understanding seasonal changes in ocean acidification in Alaskan waters and the potential impacts to the multi-billion-dollar fishery sector is a main priority. Through work funded by NOAA’s Ocean Acidification Program, the Pacific Marine Environmental Laboratory developed a model capable of depicting past ocean chemistry conditions for the Bering Sea and is now testing the ability of this model to forecast future conditions. This model is being used to develop an ocean acidification indicator provided to fisheries managers in the annual NOAA Eastern Bering Sea Ecosystem Status Report.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

Closeup of oysters cupped in someone's hands

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action